소방기술사 정규반 제 13 강의

: 제 4 장 위험물

소방기술사 박성수,신부환著

- 문제1) 유기과산화물
- 문제2) TLV
- 문제3) 위험물 제조소(위치 구조 설비)
- 문제4) 소화난이도 등급 I
- 문제5) 지하탱크 저장소(위치 ∘ 구조 ∘ 설비)
- 문제6) 옥외탱크 저장소(위치 ∘ 구조 ∘ 설비)
- 문제7) 옥내저장소(위치 ∘ 구조 ∘ 설비)
- 문제8) 위험물의 운반기준
- 문제9) Pool Fire
- 문제10) 가연성 액체의 액면상의 거동
- 문제11) 경질유 및 중질유 탱크화재의 특성
- 문제12) Boil Over
- 문제13) Slop over, Froth over
- 문제14) 위험물 저장탱크의 종류별 화재특성과 화재진압대책
- 문제15) Ring Fire(윤화)

: 제 5 장 위험성 평가

- 문제16) Risk, Hazard
- 문제17) 위험성 평가절차
- 문제18) 정성적 평가방법
- 문제19) 정량적 평가방법
- 문제20) 위험의 표현방법

문제1) 유기과산화물

1. 개념

- ① 과산화수소의 수소를 유기화합물로 치환한 물질로 과산화기를 가진 유기화합물
- ② 산소원자간 결합이 약한 결합이어서 충격 아마찰 등에 약하며 불안정성, 반응성, 연소성이 크다
- ③ 무기과산화물과 비교

	무기과산화물	유기과산화물
구 분	산화성 고체(제1류)	자기반응성 물질(제5류)
	∘ 유독성 : 없다	∘ 유독성 : 없다
특 성	∘ 가연성 : 불연성	∘ 가연성 : 가연성(폭발성)
	∘ 반응성 : 물과 반응	∘ 반응성 : 물과 반응 없음
소화방법	질식소화	냉각소화

2. 화학적 특징

- ① 분자구조 : R-O-O-R, 과산화결합(Peroxy기)
- ② 가열, 충격, 마찰 등에 민감하며, 분해 시 열을 방출
- ③ 무기과산화물과 달리, 인화성이 크고 물과 반응하지 않는다
- ④ 물질 내에 산소를 함유하고 있어 공기가 차단된 상태에서도 연소가 가능

3. 유기과산화물의 특성치

- (1) 활성 산소량
 - ① 일반산소에 비해 훨씬 화학반응을 일으키기 쉬운 산소, 예로 H2O의 산소는 안정, H2O2의 산소는 활성산소
 - ② 유기과산화물에 의해 화학반응이 될 경우, 과산화 결합수나 방출되는 라디칼수를 그 분자량당 비율로 표시한 것(분자주의 산소 함유량)

(2) 반감기

- ① 불안정한 입자가 붕괴되어 입자수가 처음의 반으로 감소하는데 걸리는 시간
- ② 과산화물이 활성 산소량의 분해에 의해 절반으로 줄어드는데 걸리는 시간으로 온 도가 높아질수록 짧아지게 된다

(3) 분해온도

- ① 분해되는 온도가 낮을수록 폭발적 분해의 위험이 크다
- ② 과산화벤조일(C14H10O4)는 100[°C]에서 급격한 분해, 과산화메틸에틸케톤(C8H16O4) 는 40[°C]에서 분해 시작
- (4) 활성화 에너지
 - ① 어떤 물질을 분해시키기 위해 높여야 하는 에너지 레벨의 상한치
 - ② 유기과산화물의 경우는 그 자체가 항상 불안정한 상태에 있기 때문에 활성화 에 너지가 매우 낮아서 저온에서도 분해하기 쉽다

- 3 -
4. 사용 시 주의사항 ① 가열 ° 충격 ° 마찰 등에 주의 ② 관련 시설의 방폭화 ③ 화기 엄금, 충격 주의 표지(운반용기) ④ 다량의 물로 냉각소화, 질식소화는 효과 없음

※ 기출문제분석3(유기과산화물관련)

- 1. 유기과산화물의 저장상 주의사항과 아세트알데히드와 산화프로필렌의 저장탱크(이동식, 옥내, 옥외)에 충진과 방출시 취급방법에 대하여 아는 대로 설명하시오?(36회,25점)
- 2. 유기과산화물 활성산소량, 분해온도, 활성화 에너지, 반감기를 각각 설명하고 사용 시 주의사하에 대하여 기술하시오?(65회,25점)
- 3. 제5류 위험물 중 유기과산화물의 특성, 저장 시 주의사항 및 안전한 취급방법에 대해 기술하시오?(76회,25점)
- 4. 다음 유기화학물의 명칭과 구조식을 기술하시오?(83회,10점)
 - 1) C7H16 2) C2H4
- 5. SiH4 (Silane가스)에 대한 연소, 폭발위험성 및 저장, 취급 방법을 설명하시오?(56회,20점)
- 6. 유기화합물의 위험성에 대해 설명하시오?(75회,25점)
- 7. 산화프로필렌(Propylene Oxide)과 질산-n-프로필(n-Propyl nitric acid)에 대한 화학적 성질, 화재 · 폭발 성, 인체의 위험성에 대하여 각각 설명하시오?(75,25점)

문제2) TLV(Threshold Limits Values)

1. 개념

- ① 유해물질의 독성을 표시할 때 어떤 농도에 노출되었을 때 손상을 입지 않는 농도로 여러 가지 농도표시법이 있다
- ② TLV는 허용한계농도로 독성물질 흡입량과 그에 의한 인체의 반응정도의 관계에서 손상을 입히지 않는 농도 중 의 최대값으로 정의한다

2. TLV 농도표시법

- (1) TLV-TWA(Time Weighted Average Concentration): 시간가중평균농도
 - ① 매일 일하는 근로자가 주 40시간, 1일 8시간씩 노출되어도 가능한 최대 평균농도
 - ② TLV-TWA농도

$$TLV$$
농도 $= \frac{C_1T_1 + C_2T_2......+ C_nT_n}{8}$ 여기서, C : 유해요인 측정농도 $(ppm$ 또는 $mg/m^2)$ T : 유해요인 발생시간 (H)

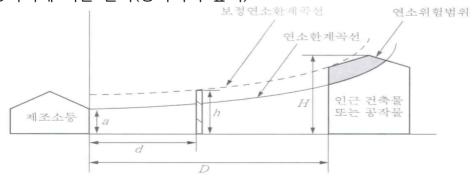
- (2) TLV-STEL(Short Term Exposure Limit) : 단시간 노출허용농도
 - ① 짧은 시간동안 노출되어도 유해한 증상이 나타나지 않는 최고의 허용농도
 - ② 근로자가 15분 동안 계속하여 노출하여도 아래와 같은 증상이 나타나지 않는 허용 농도
 - 참을 수 없는 자극
 - 만성적 또는 비가역적 조직변화
 - ◎ 사고를 일으킬 수 있는 정도의 혼수상태
- (3) TLV-C(Ceiling Value) : 최고허용한계농도
 - ① 단 한순간이라도 초과하지 않아야 하는 농도를 의미한다
 - ② 표시방법
 - □ LD50: 쥐에 대한 경구투입시험에 의해 쥐의 50[%]을 사망시킬 수 있는 농도
 - © LC50 : 쥐에 대한 4시간 흡입시험에 의해 쥐의 50[%]을 사망시킬 수 있는 농도
 - ※ L: Lethal(치명적인)

D : Dose(복용량)

C: Concentration(흡입농도)

※ 기출문제분석4(독성지수관련)

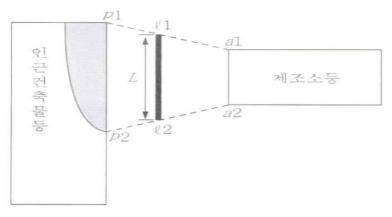
- 1. 유해물질의 독성에 노출 시 손상을 입지 않는 농도 표시인 TLV(Threshold Limit Values)에 대하여 설명하시오?(65회,10점)
- 2. 유해위험물질(화재폭발 및 독성)은 유해가스 위험정도를 판단하기 위하여 독성지수를 적용한다. 대표적인 지수인 TWA 및 STEL에 대하여 각각 기술하시오?(88회,10점)
- 3. 산업안전기준에 규정된 다음의 독성물질 구분기준항목에 대하여 설명하고, 각 항목의 함량 기준치를 제시하시오?(92회,10점)
 - 가. LD50(경구, 쥐)
 - 나. LD50(경피, 토끼 또는 쥐)
 - 다. LD50(쥐, 4시간 흡입)
- 4. 독성학의 허용농도 표시법에서 TLV (허용한계농도)에 대하여 설명하시오(99회,10점)


문제3) 위험물 제조소(위치 ∘ 구조 ∘ 설비)

1. 위험물 제조소등의 정의

- (1) 위험물 제조소
 - ① 위험물을 제조하기 위하여 지정수량 이상의 위험물을 저장 또는 취급하기 위한 시설을 설치한 장소로서 위험물시설의 설치허가를 받은 장소
 - ② 설치허가가 면제된 경우 및 협의로써 허가를 받은 것으로 보는 경우는 포함
- (2) 위험물 저장소
 - ① 지정수량 이상의 위험물을 저장할 목적으로 저장하기 위한 시설로서 위험물시설 의 설치 허가를 받은 장소
 - ② 옥내저장소, 옥외탱크저장소, 옥내탱크저장소, 지하탱크저장소, 간이탱크저장소, 옥 외저장소, 암반탱크저장소(8가지 저장소)
- (3) 위험물 취급소
 - ① 지정수량 이상의 위험물을 제조 외의 목적으로 취급하기 위한 장소로서 설치허가 를 받은 장소
 - ② 목적에 따라 주유취급소, 판매취급소, 이송취급소, 일반취급소로 구분한다

2. 안전거리


- (1) 거리기준
 - ① 학교, 병원, 극장 등 다수인 수용시설: 30[m] 이상
 - ② 문화재 : 50[m] 이상
 - ③ 주거용 시설: 10[m] 이상
 - ④ 고압가스, LNG, LPG 저장 취급 시설: 20[m] 이상
 - ⑤ 고압전선 : 3[m]이상 → 7[kV] ~ 35[kV] 이하 특 고압 가공전선 5[m]이상 → 35[kV] 초과 특 고압 가공전선
- (2) 방화벽에 의한 단축(방화벽의 높이)

- ① $H \le PD^2 + a$ 일 $H \to h = 2$
- ② H > PD² + a 일 때 → h = H P(D² + d²)
- ③ P : 방호대상물의 구조 및 재료의 상수(목조 건물 등 0.04, 을종 방화문 0.15, 갑 종 방화문 ∞)

- ④ a: 제조소 등의 외벽의 구조 및 재료별에 의해 구한다
- (3) 방화상 유효한 벽의 길이
 - ① 제조소등의 외벽의 양단(a1, a2)을 중심으로 반지름으로 한 원을 그려 당해 원의 내부에 들어오는 인근 건축물 등의 부분 중 최 외측 양단(p1, p2)을 구한다
 - ② a1과 p1을 연결한 선분(ℓ 1)과 a2와 p2를 연결한 선분(ℓ 2) 상호간의 간격(L)으로

한다

(4) 안전거리 계산

- ① 방호대상물과 위험물 시설의 외벽 또는 외측 사이의 수평거리제조소등의 용도에 직접 사용되는 건축물의 외벽 또는 공작물의 외측까지
- ② 제조소 외부와 연결된 배관시설은 제외
- ③ 방화벽 또는 담이 있는 경우는 그 벽 또는 담까지

2. 보유공지

- (1) 개념
 - ① 위험물 시설 차체의 연소방지 및 소화활동상의 공간
 - ② 외부로부터 복사열을 20[kW/m²] 이하로 받을 수 잇도록 이격시킨 거리
 - ③ 안전거리 : 위험물 시설과 인접 건물 사이의 화재 및 환경안전상의 이격거리
- (2) 기준
 - ① 위험물 제조소

□ 지정수량 10배 미만 : 3[m] 이상□ 지정수량 10배 이상 : 5[m] 이상

② 옥내저장소

저장 ∘ 취급량	보유공지	
	내화	비내화
지정수량의5배이하	-	0.5[m]
5 ~ 10배	1[m]	1.5[m]
10 ~ 20	2[m]	3[m]
20 ~ 50	3[m]	5[m]
50 ~ 200	5[m]	10[m]
200초과	10[m]	15[m]

③ 옥외저장소

저장◦취급량	보유공지
10배 이하	3[m]
10 ~ 20	5[m]
20 ~ 50	9[m]
50 ~200	12[m]
200 초과	15[m]

3. 표지 및 게시판

① "위험물 제조소"라는 표지를 설치

□ 표지 크기 : 0.3[m] × 0.6[m] 이상 (사각형)

○ 표지 표시 : 바탕(백색), 문자(흑색)

② 방화에 필요한 사항을 게시한 게시판을 설치

□ 게시판 크기: 0.3[m] × 0.6[m] 이상 (직사각형)

© 게시판 기재사항 : 위험물의 유별·품명·저장최대수량, 취급최대수량, 지정수량

의 배수 • 안전관리자의 성명, 직명

◎ 게시판 표시 : 바탕(백색), 문자(흑색)

◎ 주의사항을 표시한 게시판 설치

품 명	주의사항	게시판 표지
제1류 위험물(알칼리금속의 과산화물)	"물기엄금"	ULEF(첫새) ㅁㅜL(배새)
제3류 위험물(금수성 물질)	돌기감ㅁ	바탕(청색), 문자(백색)
제2류 위험물	"화기주의"	바탕(적색), 문자(백색)
제2류 위험물(인화성 고체)		
제3류 위험물(자연발화성 물질)	"히기어그"	ᅵᅵᅵᅵᅡ타ᄼ저ᄊᆘᄾᆘ
제4류 위험물	"화기엄금"	바탕(적색), 문자(백색)
제5류 위험물		

4. 건축물의 구조

- ① 지하층이 없는 구조
- ② 벽 · 기둥 · 바닥 · 보 · 서까래 · 계단 : 불연재료, 연소의 우려가 있는 외벽은 개구부 가 없는 내화구조의 벽
- ③ 지붕 : 폭발력이 위로 방출될 정도의 가벼운 불연재료
- ④ 출입구와 비상구 : 갑·을종 방화문을 설치, 연소의 우려가 있는 외벽에 설치하는 출입구는 자동폐쇄식의 갑종 방화문을 설치
- ⑤ 창 · 출입구의 유리 : 망입 유리
- ⑥ 건축물의 바닥 : 위험물이 스며들지 못하는 재료를 사용하고, 적당한 경사를 두어 그 최저부에 집유 설비를 설치

5. 조명 • 채광 • 환기설비

- ① 조명설비
 - 가연성 가스 등이 체류할 우려가 있는 장소 : 조명등은 방폭등
 - 전선: 내화 ∘ 내열전선
 - ◎ 점멸스위치 : 출입구 바깥부분에 설치
- ② 채광설비
 - 불연재료
 - 연소의 우려가 없는 장소에 설치하되 채광면적은 최소
- ③ 환기설비
 - 환기: 자연배기방식

○ 급기구 개수 : 바닥면적 150[m²]마다 1개 이상

© 급기구 크기 : 800[m²] 이상

⊜ 바닥면적이 150[m²] 미만인 경우

바 닥 면 적	급기구의 면적
60(m²)미만	150[m²] 이상
60[m²]이상 90[m²]미만	300[m²] 이상
90[m²]이상 120[m²]미만	450[m²] 이상
120[m²]이상 150[m²]미만	600[m²] 이상

◎ 급기구 : 낮은 곳에 설치하고 가는 눈의 구리망(인화 방지망)을 설치

⋻ 환기구 ; 지붕 위, 지상 2m 이상의 높이에 회전식 고정 벤티레이터, 루프팬 방식

6. 배출설비

: 가연성 증기·미분이 체류할 우려가 있는 건축물 옥외의 높은 곳으로 배출설비를 설 치할 것

① 배출방식: 국소배출방식

② 배출방법 : 배풍기 · 배출 덕트 · 후드 등을 이용한 강제배출

③ 배출능력 : 1시간당 배출장소 용적의 20배 이상

④ 급기구 • 배출구

□ 급기구 : 높은 곳에 설치하고, 가는 눈의 구리망(인화 방지망)을 설치

© 배출구: 지상 2m 이상으로서 연소의 우려가 없는 장소에 설치

◎ 배출 덕트 관통부분 : 화재 시 자동으로 폐쇄되는 방화 댐퍼를 설치

⑤ 배풍기 : 강제배기방식으로 하고, 옥내 덕트의 내압이 대기압 이상의 위치에 설치

7. 옥외설비의 바닥

- ① 바닥의 둘레에 높이 0.15m 이상의 턱을 설치하고, 위험물이 외부로 누출방지
- ② 바닥은 콘크리트로 하고, 턱이 있는 쪽이 낮게 경사를 준다
- ③ 바닥의 최저부에 집유 설비를 설치
- ④ 위험물이 직접 배수구에 누출되지 아니하도록 집유 설비에 유분리 장치를 설치

8. 기타설비

- ① 위험물의 누출 · 비산방지장치
 - : 위험물을 취급하는 기계·기구·설비는 위험물이 새거나 넘치거나 비산을 방지하 는 구조
- ② 가열 · 냉각설비 등의 온도 측정 장치
 - : 위험물을 가열∘냉각∘취급 시 온도변화가 생기는 설비에는 온도 측정 장치를 설치
- ③ 가열건조설비
 - : 위험물을 가열 건조하는 설비는 직접 불을 사용하지 아니하는 구조
- ④ 압력계 및 안전장치
 - : 위험물 가압설비, 위험물의 압력이 상승할 우려가 있는 취급설비에 설치

- 자동적으로 압력의 상승을 정지시키는 장치
- 감압측에 안전밸브를 부착한 감압밸브
- ◎ 안전밸브를 병용하는 경보장치
- ◎ 파괴판(안전밸브의 작동이 곤란한 가압설비)
- ⑤ 전기설비
 - : 제조소에 설치하는 전기설비는 전기설비기술기준을 적용
- ⑥ 정전기 제거설비
 - : 위험물 취급 시 정전기가 발생할 우려가 있는 설비에는 정전기 제거설비를 설치
 - 접지에 의한 방법
 - 공기 중에 상대습도를 70[%] 이상으로 하는 방법
 - ◎ 공기를 이온화하는 방법
- ⑦ 피뢰설비(제6류 위험물 제외)
 - : 지정수량의 10배 이상의 위험물을 취급하는 제조소에는 피뢰침을 설치
- ⑧ 전동기 등
 - : 전동기·위험물을 취급하는 설비의 펌프·밸브·스위치 등은 화재 예방상 지장이 없는 위치에 부착

9. 배관

- (1) 재질
 - : 다음 각목의 기준에 적합한 지하매설배관의 경우를 제외하고는 강관 그 밖에 이와 유사한 금속성일 것
 - ① 배관의 재질: 유리섬유강화플라스틱 · 고밀도폴리에틸렌 · 폴리우레탄
 - ② 배관의 구조 : 내·외관의 이중으로 하고, 내·외관의 사이에는 틈새공간을 두어 누설 여부를 외부에서 쉽게 확인
 - ③ 시험 인증 : 국내 국외의 공인시험기관으로부터 안전성 확보
- (2) 수압시험 : 최대상용압력의 1.5배 이상의 압력으로 누설확인(불연성의 액체 기체)
- (3) 지상배관 : 지진 · 풍압 · 지반침하 · 온도변화에 안전한 구조의 지지물로서, 외면에 부식방지를 위한 도장
- (4) 지하배관
 - ① 외면에는 부식방지를 위하여 도복장 · 코팅 · 전기방식 등의 조치
 - ② 배관의 접합부분(용접 제외)에는 위험물의 누설여부를 위한 점검구 설치
 - ③ 지면중량이 배관에 미치지 아니하도록 보호
- (5) 가열 보온설비 : 화재예방상 안전한 구조

<u>문제4) 소화난이도등급 I</u>

1. 소화난이도등급 I 에 해당하는 제조소등

제조소등의 구분	제조소등의 규모, 저장 또는 취급하는 위험물의 품명 및 최대수량
711220-112	등
	① 연면적 1,000m² 이상인 것
(1)제 조 소	② 지정수량의 100배 이상인 것
일반취급소	③ 지반면으로부터 6m 이상의 높이에 위험물 취급설비가 있는 것
글만되답고	④ 일반취급소로 사용되는 부분 외의 부분을 갖는 건축물에 설치
	된 것
	① 지정수량의 150배 이상인 것
	② 연면적 150m²을 초과하는 것
(2)옥내저장소	③ 처마높이가 6m 이상인 단층건물의 것
	④ 옥내저장소로 사용되는 부분 외의 부분이 있는 건축물에 설치
	된 것
	① 액 표면적이 40m² 이상인 것
(3)옥외탱크저장소	② 지반면으로부터 탱크 옆판의 상단까지 높이가 6m 이상인 것
(9)7404/104	③ 지중탱크 또는 해상탱크로서 지정수량의 100배 이상인 것
	④ 고체위험물을 저장하는 것으로서 지정수량의 100배 이상인 것
	① 액 표면적이 40㎡ 이상인 것
	② 바닥면으로부터 탱크 옆판의 상단까지 높이가 6m 이상인 것
(4)옥내탱크저장소	③ 탱크전용실이 단층건물 외의 건축물에 있는 것으로서 인화점4
	0℃ 이상 70℃ 미만의 위험물을 지정수량의 5배 이상 저장하는
	것
	① 덩어리 상태의 유황 등을 저장하는 것으로서 경계표시 내부의
	면적이 100㎡ 이상인 것
(5)옥외저장소	② 인화성고체, 제1석유류 또는 알콜류를 저장하는 장소로 지정수
	량의 100배 이상인 것
	① 액 표면적이 40㎡ 이상인 것
(6)암반탱크저장소	② 고체위험물을 저장하는 것으로서 지정수량의 100배 이상인 것
(7) 이송취급소	① 모든 이송취급소
(*) *10 IIB *	© -L 10118-

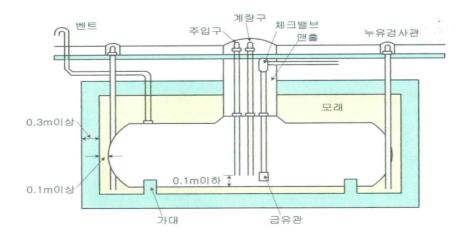
2. 소화난이도등급 I 에 해당하는 제조소등에 적용 가능한 소화설비

- (1) 옥내소화전 설비
 - ① 수평거리 25m 이내로 각층 출입구 부근에 1개소 이상 설치
 - ② 수원의 양은 소화전 설치 개수 × 7.8[m²](기준개수 5개)
 - ③ 방사 압력은 350[kPa] 이상, 방수량은 1분당 260[l]이상
 - ④ 비상전원 설치
- (2) 옥외소화전 설비
 - ① 수평거리 40m 이내
 - ② 수원의 양은 소화전 설치 개수 × 13.5[m³](기준개수 4개)
 - ③ 방사 압력은 350[lPa] 이상, 방수량은 1분당 450[l]이상

- ④ 비상전원 설치
- (3) 스프링클러 설비
 - ① 헤드간격은 수평거리 1.7m 이내(살수밀도를 충족시킬 수 있을 때는 2.6m)
 - ② 개방형 헤드 방사구역은 150[m²] 이상(바닥면적 150m² 이하는 당해 바닥면적)
 - ③ 수원은 30개 기준 × 2.4[m³](헤드수 30개 미만은 해당 헤드 수)
 - ④ 방사 압력은 100[kPa] 이상(살수밀도 충족시 50kPa 이상)
 - ⑤ 헤드 당 토출량은 80[lpm] 이상(살수밀도 충족시 56lpm 이상)
 - ⑥ 비상전원 설치
- (4) 물 분무 소화설비
 - ① 물 분무 헤드로 표면을 적시는 구조
 - ② 수원은 1[m²]당 20[lpm]의 비율로 30분 이상 방사할 수 있는 양
 - ③ 방사구역은 150[m²] 이상(바닥면적 150m² 이하는 당해 바닥면적)
 - ④ 방사 압력은 350[kPa] 이상
 - ⑤ 비상전워 설치
- (5) 포 소화설비
 - ① 필요한 개수의 고정식 포 소화설비를 필요한 위치마다 설치
 - ② 옥외에 적정 개수의 이동식 포 소화설비를 설치
 - ③ 비상전원 설치
- (6) 이산화탄소 소화설비
 - ① 전역 방출방식
 - ② 국소 방축방식
 - ③ 이동식 이산화탄소 소화설비(수평거리 15m 이하)
 - ④ 화재를 유효하게 소화할 수 있는 양 이상의 약제량
 - ⑤ 비상전워 설치
- (7) 할론 소화설비
 - : 이산화탄소 소화설비의 기준을 준용할 것
- (8) 분말 소화설비
 - : 이산화탄소 소화설비의 기준을 준용할 것
- (9) 대형수동식 소화기
 - ① 보행거리 30[m] 이하
 - ② 다만, 옥내 · 옥외소화전설비, 스프링클러설비 또는 물분무등 소화설비와 함께 설치 시 예외
- (10) 소형수동식 소화기
 - ① 유효하게 소화할 수 있는 위치에 설치 :
 - : 지하탱크 간이탱크 이동탱크저장소, 주유취급소, 판매취급소
 - ② 보행거리 20[m] 이하 : 그 밖의 제조소 등
 - ③ 다만, 옥내 · 옥외소화전설비, 스프링클러설비, 물분무등 소화설비 또는 대형수동식 소화기와 함께 설치시 예외

3. 소화난이도등급 I 에 해당하는 제조소등에 적용 가능한 경보설비

- (1) 자동 화재탐지설비
 - ① 경계구역 2 이상의 층에 걸치지 아니할 것
 - ② 경계구역 면적이 500m' 이하는 제외
 - ③ 계단 · 경사로 · 승강기의 승강로 그 밖의 이와 유사한 장소에 연기감지기를 설치한 경우 제외
 - ④ 하나의 경계구역 면적 600m² 이하, 한변의 길이 50m 이하(광전식분리형 100m)
 - ⑤ 출입구에서 그 내부의 전체를 볼 수 있는 경우는 경계구역 면적 1,000㎡ 이하
 - ⑥ 비상전원 설치
- (2) 비상경보설비, 확성장치 또는 비상방송설비


4. 피난설비

- ① 주유취급소 중 건축물의 2층 이상의 부분을 점포·휴게음식점 또는 전시장의 용도로 사용하는 것에 있어서는 당해 건축물의 2층 이상으로부터 직접 주유취급소의 부지 밖으로 통하는 출입구와 당해 출입구로 통하는 통로·계단 및 출입구에 유도등을 설치할 것
- ② 옥내주유취급소에 있어서는 당해 주유소 등의 출입구 및 피난구에 당해 피난구로 통하는 통로 · 계단 및 출입구에 유도등을 설치할 것
- ③ 유도등에는 비상전원을 설치할 것

문제5) 지하탱크저장소(위치 ∘ 구조 ∘ 설비)

1. 지하탱크저장소의 기준

- (1) 지하탱크저장소의 탱크
 - ① 지하탱크는 지면 하에 설치된 탱크전용실에 설치
 - ② 탱크를 지하철 · 지하가 · 지하터널로부터 수평거리 10m 이내의 장소에 설치금지
 - ③ 크기가 0.6m 이상, 두께가 0.3m 이상인 철근콘크리트조의 뚜껑으로 덮을 것
 - ④ 뚜껑에 걸리는 중량이 직접 당해 탱크에 걸리지 아니하는 구조
 - ⑤ 탱크를 견고한 기초 위에 고정
- (2) 지하탱크저장소의 매설
 - ① 탱크실의 상하좌우의 내벽과 0.1m 이상의 간격을 두고 모래를 채운다
 - ② 2개 이상의 탱크를 인접하여 설치 시 그 상호간에 1m 이상 이격
 - ③ 지하저장탱크의 윗부분은 지면으로부터 0.6m 이상 아래에 위치
- (3) 지하탱크저장소의 구조
 - ① 지하저장탱크의 재질은 두께 3.2mm 이상의 강철판
 - ② 탱크외면에는 방청도장
 - ③ 액체 위험물 저장 시 계량장치 또는 계량구 설치
- (4) 지하탱크저장소의 배관
 - ① 배관은 당해 탱크의 윗부분에 설치(원칙)
 - ② 강관 기타 이와 유사한 금속성
 - ③ 최대 사용압력의 1.5배 이상의 내압시험
 - ④ 배관외면에 부식방지 도장
- (5) 지하탱크실의 누유 검사관
 - ① 이중관으로 할 것
 - ② 재료는 금속관 · 경질합성수지관으로 할 것
 - ③ 관은 탱크실 또는 탱크의 기초 위에 닿게 할 것
 - ④ 관의 밑부분으로부터 탱크의 중심 높이까지의 부분에는 소공이 뚫려 있을 것

※ 기출문제분석5(위험물제조소관련)

- 1. 현저하게 소화가 곤란한 제조소 등에 해당되는 시설 규모의 기준과 설치하여야 할 소방 설비를 기술하시오(39회,20점)
- 2. 위험물 제조소 등의 종류, 소방시설 및 위험물 제조소의 구조에 대하여 기술하시오(41회,25점)
- 3. 위험물 제조소의 안전장치를 열거하고 설명하시오(61회,25점)
- 4. 위험물 제조소 등에 피뢰침을 설치하지 않아도 좋은 것은 어떤 경우인가(48회,10점)
- 5. 위험물 제조소의 정전기 제거 방법에 대하여 설명하시오(57회,20점)
- 6. 위험물 제조서 등에서 소화난이도 I 에 해당하는 시설을 구분하여 기술하시오(83회,25점)
- 7. 위험물 제조소 내의 위험물을 취급하는 배관은 소방기술기준에 관한 규칙에 따라 설치하도록 되어 있다. 본 기준 내용에 대하여 기술하시오(69회,25점)
- 8. 국내 위험물안전관리법상 규정된 "소화난이도등급-I"에 해당되는 위험물일반취급소의 시설규모 및 위험물 취급량 등의 기준을 열거하고, 제4류 위험물 취급시설인 경우에 적용 가능한 고정식 소화설비(Fixed Fire Fighting System)의 종류를 세부적으로 기술하시오(88회,25점)
- 9. 위험물시설중 소화난이도 등급1에 해당하는 제조소 등을 구분하고 필요한 소화설비의 종류에 대하여 기술 하시오(95회,25점)
- 10. 가연성 증기 또는 미분이 체류할 우려가 있는 특정 위험물제조소에서 발생하는 증기 또는 미분의 배출설비에 대하여 기술하시오(84호,25점)
- 11. 위험물 취급소 설치에 고려해야 할 건축물의 구조 및 설비의 설치에 관하여 설명하라(48회,20점)
- 12. 지정 과산화물의 옥내저장소 설치기준에 대하여 기술하시오(31회,20점)
- 13. 위험물 옥내 저장소의 배출 설비의 개략도를 작도하고 기준을 설명하시오(60회,25점)
- 14. 지하 탱크 저장소를 도면화하고 설명하시오(72회,25점) (단, 탱크 1기이며 제4류 위험물 탱크 전용실임)
- 15. 지하위험물 저장탱크의 방화안전을 위하여 고려해야 할 사항에 대해 논하라(28회,10점)
- 16. 지하위험물 저장탱크 저장소의 설치기준을 기술하라(23회,30점)
- 17. 지하위험물 저장소 중 저장탱크 저장소의 기준에 대하여 설명하시오(17회,25점)

문제6) 옥외탱크저장소(위치 ∘ 구조 ∘ 설비)

1. 안전거리

: 옥외저장탱크의 안전거리는 "위험물 제조소"에 준한다

2. 보유공지

① 옥외저장탱크의 주위에는 다음 너비의 공지를 보유할 것

저장 • 취급하는 위험물의 최대수량	공지의 너비
지정수량의 500배 이하	3m 이상
지정수량의 500배 초과 1,000배 이하	5m 이상
지정수량의 1,000배 초과 2,000배 이하	9m 이상
지정수량의 2,000배 초과 3,000배 이하	12m 이상
지정수량의 3,000배 초과 4,000배 이하	15m 이상
	탱크 수평단면의 최대지름과 높이 중 큰
지정수량의 4,000배 초과	것 이상
	(단, 30m초과: 30m이상, 15m미만: 15m이상)

- ② 탱크(제6류 제외)를 방유제안에 2개 이상 인접하여 설치 시 인접한 보유 공지는 제 ①항 보유 공지의 1/3 이상의 너비를 확보(최소 3m 이상)
- ③ 탱크(제6류)는 제①항 보유 공지의 1/3 이상의 너비를 확보(최소 1.5m 이상)
- ④ 탱크(제6류)를 방유제안에 2개 이상 인접하여 설치 시 인접하는 보유 공지는 제③항 보유 공지의 1/3 이상의 너비를 확보(최소 3m 이상)
- ⑤ 공지단축 옥외저장탱크에 물분무설비로 방호조치를 하는 경우에는 그 보유 공지를 제①항의 1/2 이상의 너비를 확보(최소 3m 이상)

3. 통기관

- : 압력탱크외의 탱크(제4류)에는 밸브 없는 통기관 어디기밸브부착 통기관을 설치
- (1) 밸브 없는 통기관
 - ① 직경은 30[mm] 이상
 - ② 선단은 수평면보다 45도 이상 구부려 빗물 등의 침투를 막는 구조
 - ③ 가는 눈의 구리망(인화방지장치)등을 설치
 - ④ 가연성증기 회수밸브를 통기관에 설치 시 항상 개방되어 있는 구조 (위험물 주입 시 제외), 폐쇄 시에는 10[kPa] 이하의 압력에서 개방되는 구조
- (2) 대기밸브부착 통기관
 - ① 가는 눈의 구리망(인화 방지장치)등을 설치
 - ② 5[kPa] 이하의 압력차이로 작동

4. 방유제

(1) 인화성액체위험물(이황화탄소 제외)의 방유제 기준

구 분	설 치 기 준
	⊙ 1기 탱크 : 탱크 용량의 110% 이상
	ⓒ 2기 이상의 탱크 : 최대탱크의 용량의 110% 이상
	© 방유제의 용량 산정 시 다음의 체적을 뺀 값
	- 최대용량탱크 외의 탱크의 방유제 높이 이하 부분의
① 방유제의 용량	용적
	- 모든 탱크의 기초체적
	- 간막이 둑의 체적
	- 배관 등의 체적
② 방유제의 높이	0.5m 이상 3m 이하
③ 방유제내의 면적	8만m'이하
④ 방유제내의 탱크 수	10기 이하
⑤ 방유제와 탱크간의 거	□ 지름이 15m 미만 : 탱크 높이의 1/3 이상
리(이격 거리)	© 지름이 15m 이상 : 탱크 높이의 1/2 이상 ⑤ 방유제의 용량 1,000만ℓ 이상 설치
	□ 간막이 둑의 높이 : 0.3m 이상, 방유제 높이보다 0.2m
⑥ 간막이 둑 설치 방유제	이상 낮게 설치
와 탱크간의 거리	, - , , . – ,
	© 간막이 둑의 구조 : 흙·철근콘크리트
	◎ 간막이 둑의 용량 : 탱크용량의 10% 이상- 방유제 외면의 1/2 이상은 3m 이상의 구내도로에 직접
⑦ 자동차 통행로	정파제 되는데 되는 이용는 3M 의용의 기계포도에 되답 접할 것
	- 1m를 넘는 방유제·간막이 둑의 안팎에는 계단·경사로
│⑧ 계단◦경사로	를 약50m 마다 설치
	○ 방유제 내에는 배관, 조명설비, 부속설비 외에는 다른
	설비를 설치금지
	© 방유제◦간막이 둑을 관통하는 배관은 설치금지
⑨ 배관	© 방유제 내부에는 배수구를 설치하고 개폐밸브는 방유재
	의 외부에 설치
	│
	- 철근콘크리크 · 흙으로 만들고, 위험물이 방유제의 외부로
⑩ 방유제의 구조	유출되지 아니하는 구조
(~) 이렇서이 어느 에베이킹	

- (2) 인화성이 없는 액체위험물
 - ① 방유제의 용량, 방유제의 높이, 방유제의 구조, 계단·경사로(①,②,⑦,⑨항) 규정은 방유제의 기술기준을 준용
 - ② 방유제의 용량 "①항" 중 "110%"는 "100%"로 본다

문제7) 옥내저장소(위치 ∘ 구조 ∘ 설비)

1. 지정과산화물의 옥내저장소 설치기준

- (1) 안전거리
 - : 지정과산화물의 옥내저장소의 안전거리는 "위험물 제조소"에 준한다
- (2) 보유공지
 - : 지정과산화물의 옥내저장소의 보유공지는 "위험물 제조소"에 준한다
- (3) 저장창고의 기준
 - ① 격벽 구획
 - 두께 30㎝ 이상의 철근콘크리트조 또는 철골철근콘크리트조
 - □ 두께 40㎝ 이상의 보강콘크리트블록조
 - © 양측의 외벽으로부터 1m 이상, 상부의 지붕으로부터 50cm 이상 돌출
 - ② 외벽
 - 두께 20㎝ 이상의 철근콘크리트조나 철골철근콘크리트조
 - © 두께 30cm 이상의 보강시멘트블록조
 - ③ 지붕
 - 중도리 또는 서까래의 간격은 30cm 이하
 - © 45cm 이하의 환강(丸鋼)。경량형강(輕量型鋼)등으로 강제(鋼製)의 격자를 설치
 - ◎ 지붕 아래 면에 철망을 쳐서 불연 재료의 도리 보 또는 서까래에 단단히 결합
 - ◎ 두께 5cm 이상, 너비 30cm 이상의 목재의 받침대 설치
 - ④ 출입구: 갑종 방화문 설치
 - ⑤ 창 : Э 바닥면으로부터 2m 이상의 높이에 설치
 - 창의 면적 합계는 당해 벽면의 면적의 1/80 이내
 - © 하나의 창의 면적은 0.4m' 이내로 할 것

문제8) 위험물의 운반기준

1. 위험물법 규정의 운반방법

- ① 위험물 이 위험물 운반용기는 마찰 이동요를 일으키지 아니하도록 운반
- ② 위험물의 운반차량에는 표지를 설치(지정수량 이상)
 - □ 크기 : 0.3m × 0.6m 이상인 직사각형
 - "위험물"표시 : 바탕(흑색), 재료(황색의 반사도료)
 - ◎ 표지 : 차량의 전면 ∘ 후면의 보기 쉬운 곳에 설치
- ③ 위험물을 다른 차량에 이송 · 휴식 · 고장 등은 안전 확보에 주의
- ④ 위험물 이송차량은 적응성이 있는 소형수동식소화기를 소요단위 이상 설치
- ⑤ 위험물 운반도중 재난발생 우려 시 응급조치를 강구하고, 소방관서에 통보
- ⑥ 품명·지정수량을 달리하는 2 이상의 위험물 운반 시 각각의 지정수량으로 나눈값 이 1 이상일 때 지정수량 이상의 위험물로 본다

2. 미국 DOT기준

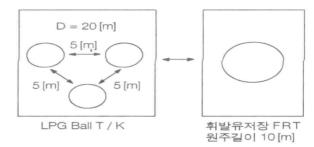
- (1) 위험물 관련 데이터베이스
 - ① 미국의 경우 위험물사고 데이터베이스와 유고 데이터베이스를 연방정부, 교통부, 주정부에서 취합, 관리하고 있다
 - ② 이를 통해 사고의 유형, 피해액, 응급조치사항 등을 가지고 사고의 원인을 줄이고 더욱 신속한 재난체계를 세우는 근거로 활용하고 있다
 - ③ 미국에서는 위험물 사고 시 응급처치책자(Emergency Response Guidebook)를 소 지 하도록 이를 Internet을 통해서도 제공한다
 - ④ 캐나다에서는 위험물 수송 감독기관(Transport of Dangerous Goods Directorate, TDGD)을 조직, 위험물 취급과 수송에 관련한 정보를 제공하고 있다
- (2) 위험물의 안전수송방안(경로지정)
 - ① 위험물의 안전수송방안은 포괄적으로는 수송 시 안전을 위한 차량관리, 운전자 교육 및 안전관리자의 동승, 화물의 안전을 위한 차량설계 및 탑재장치 등을 포함하고 있다
 - ② 중심적인 사항으로 위험물 종류에 따른 노선지정 및 허가, 지정경로의 설계기준이 그 대상이다
 - ③ 달라스와 포스워스에서는 1978년 위험물 운반차량의 운속노선지정을 법제화하고 위험물 운반차량에 대한 노선을 규제하고 있다
 - ④ 최근 교통사고분석을 통해 최소위험경로와 최소시간경로를 비교한 뒤 최상의 운 송노선을 주이용 노선으로 하고 도심 내 고속도로구간에서 위험물 운반차량의 진 출입을 금지 시킨다
- (3) 위험물사고 피해 최소화방안
 - ① 위험물운송 지정도로의 도로설계 기준이 있으며 곡선반경, 편구배, 도로폭, 중앙분

리대, 가드레일 등에 관한 기준을 포함한다

- ② 사고발생시 위험물로 인한 인면과 사회에 미치는 피해를 최소화하기 위하여 관리 를 요하는 특수시설에 대하여 위험물 방어체계를 구축하고 있다
- ③ 가령 사고발생시 이를 쉽게 감지할 수 있는 장치로써 가스검지기와 긴급 호출 장 치를 들 수 있고 주요공공시설(저수지, 터널, 교량 등)의 출입제한과 출입허용 시 위험물 유출에 대한 시설물 설치 등이 그 내용이다
- ④ 긴급대응 능력은 미국의 경우 911을 통한 긴급연락, "CHEMTREC"을 통한 위험물 사고 시 취해야하는 응급조치요령 등이 있다

(CHEMTREC : Chemical Transportation Emergency Center)

(4) 첨단기술의 활용

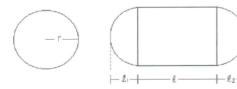

- ① 위험물차량관리로는 GPS를 이용한 AVL(자동차량위치추적)시스템을 이용하여 실시 간으로 위치추적을 하여 수송경로를 알리고 사고 시 위험물정보, 운전자정보, 차 량 정보를 화주, 운송업자, 구급대, 경찰 등에 알림으로써 재난관리체계를 구축하 게 된다
- ② 독일 뮌헨시의 경우 위험물 차량이 시내부로 진입할 경우 경보가 울리게 하고 교 통정보센터에서 실시간 위치를 추적하여 관리하고 있다

※ 기출문제분석6(옥외탱크저장소관련)

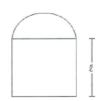
- 1. 옥외 위험물탱크 저장소의 소화설비 및 경보설비에 대하여 상술하라(17회,25점)
- 2. 옥외탱크 저장소의 설치계획 시 방화안전상 고려하여야 할 사항에 대하여 기술하라(33회,15점)
- 3. 정유공장의 원유(Crude Oil) 저장탱크(옥외탱크) 설치 시 화재안전과 관련한 방호대책에 대하여 상술하시 오(34회,25점)
- 4. 석유콤비나트나 플랜트에는 화재가 발생하였을 때 위험구역을 최소화하고 또 인접한 설비로의 화염전파 를 방지하기 위한 화재확대 방지시스템이 필요하다. 이 화재확대 방지시스템을 기술하시오(37회,20점)
- 5. 옥외탱크 저장소의 설계기준과 최대소화수량에 대하여 설명하시오(50회,25점)

조건 : ① 방사면적 : 표면적당 10[lpm/m²]

- ② 휘발유탱크 원주길이 당 37[lpm/m]
- ③ Ball Tank의 표면적 πD^2 , 체적 $\pi D^3/4$
- ④ 포 소화설비는 고려하지 않는다


- 6. 대형 옥외 휘발유 저장탱크의 화재위험성과 그 방화안전대책을 논하시오(28회,20점)
- 7. 위험물 옥외 탱크저장소의 방유제에 대해 설명하시오(63회,25점)
- 8. 위험물 제조소의 안전거리와 보유 공지에 대한 개념을 설명하고 위험물 제조소의 구조에 대하여 설명하 라(43회,20점)
- 9. 위험물 제조소 및 일반취급소의 보유 공지 기준과 완화조건에 대하여 기술하시오(88회,10점)
- 10. 국내에서 적용되는 방유제(Dike)내의 옥외탱크저장소의 저장규모별로 구분되는 보유 공지, 저장탱크 간 의 이격거리(인접탱크간의 보유 공지) 및 보유 공지 단축기준에 대하여 설명하고, 이 용도의 물 분무소 화설비의 설치기준에 대하여 설명하시오(92회,25점)
- 11. 위험물 탱크 공간용적의 산정기준을 설명하고, 다음 그림과 같은 탱크의 내용적 계산식을 쓰시오(94 회,25점)

 - 1) 타워형 탱크의 내용적(양쪽이 볼록한 것) 2) 타원형 탱크의 내용적(한쪽은 볼록하 고 다른 한쪽은 오목한 것)

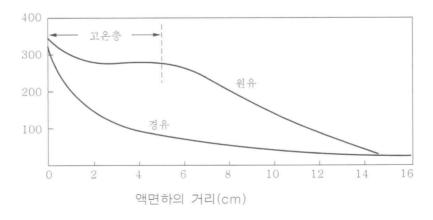


- 3) 원통형 탱크의 내용적(횡으로 설치한 것) 4) 원통형 탱크의 내용적(종으로 설치한 것)

- 12. 일정규모 이상의 인화성 또는 발화성 위험물질을 제조, 저장 및 취급하는 시설은 특정 보호시설과 적정 한 안전거리의 확보가 요구된다. 위험물 안전 관리법에 규정된 안전거리 이격기준을 설명하시오(97회,25 점)
- 13. 소방법에 의한 위험물 운반방법의 기준에 대하여 논하시오(33회,20점)
- 14. 위험물 물질의 운송(도로, 철도, 항공)의 국내기준과 미국 DOT 기준을 비교 설명하시오(57회,20점)

문제9) Pool Fire(액면화재)

1. 개념


- ① Pool Fire는 액면 상에서 증기와 공기가 혼합하여 연소하는 확산연소 형태의 화재
- ② 용기나 저장조 내와 같이 크기가 정해진 액면 위에서 타는 화재를 말하며, 복사열에 의한 피해, Boil Over, Slop Over 등의 발생 등을 고려해야 한다

2. Pool Fire의 구조

- ① 액면화재의 구조는 화염으로부터 열이 액면에 전달되어 액온이 상승하여 증기가 발생하고 이것이 공기와 혼합하여 연소하는 과정의 반복이다
- ② 액면화재는 화염으로부터 액면으로의 전열과 액체의 증발이 지배하므로 액면 강하속도, 액면아래의 온도분포, 화염높이와 바람에 의한 경사 등의 연소특성이 있다

3. 액면하의 온도분포

- (1) 단일성분 액체의 저장조
 - ① 액면 부근은 비점 정도의 온도가 되며, 저장조 아래로 내려갈수록 온도는 지수함 수적으로 급격히 낮아진다
 - ② 액 하부로는 큰 대류가 발생되지 않기 때문이다
- (2) 혼합성분 액체의 저장조
 - ① 원유와 같은 다 비점 액체에서는 비점이 낮은 성분(경질유)이 먼저 증기화 되고, 액면 부근에는 가열된 비점이 높은 성분(중질유)만 남게 된다
 - ② 무거운 중질유가 위에 있는 불안정한 상태이므로, 밀도차에 의해 고온의 중질유가 아래로 이동된다
 - ③ 이에 따라 액면 아래로 고온이 전달되어 고온층(Hot Zone)이 형성된다. 이러한 고 온층은 Boil Over를 일으키는 원인이 된다

4. 연소속도

(1) Pool Fire는 연료의 종류와 관계없이 연소속도는 연료의 소모에 따른 액면 강하속도로 표시한다

(2) 액면 강하속도

$$V = A \times \frac{H_C}{H_V}$$

여기서, V: 액면 강하속도 $[mm/\min]$, A: 액면 $[m^2]$ H_C : 연료의 연소열, H_V : 연료의 증발잠열(기화열)

- (3) 액면 강하속도와 Re수의 관계
 - ① $Re = \frac{V \times d}{v}$ 여기서, V: 액면강하속도, d: pool의 직경 v: 저장 액체의 동점성 계수
 - ② Re < 20인 영역: pool직경이 커질수록 액면 강하속도는 감소
 - ③ 20 < Re 200인 영역: 직경에 관계없이 급격히 증가
 - ④ Re > 200인 영역: 액면 강하속도는 일정(직경 1m 이상인 경우 복사열에만 의존)

5. 액면 강하속도에 영향을 주는 인자

- (1) Pool직경
 - ① 용기의 직경은 연소 초기의 대류가 주된 열전달이 때에 영향을 많이 미친다
 - ② 일정크기 이상(보통 1m 이상)의 Pool에서는 용기직경은 연소속도에 영향을 미치지 않는다
- (2) 화염의 높이
 - ① 화염의 높이가 1m 이상이 되면, 복사가 Pool Fire의 열류를 지배한다
 - ② Pool직경에 대한 화염의 높이

$$\frac{L}{d} = A \circ (Fr)^{\frac{1}{5}}$$

여기서, A:가솔린은 40, 알코올은 8정도

$$Fr:$$
 프루우드 수 $(Fr = \frac{v^2}{gd})$

d:pool의 직경(직경이 클수록 화염의 높이는 증대)

- ③ 화염의 높이에 영향을 주는 인자
 - : 부력, 연소속도, 액체의 종류(기화잠열), 풀직경등
- (3) 바람
 - ① 바람에 의해 화염이 기울어지면 액면으로의 복사량이 증대되어 증발이 촉진되어 연소속도가 빨라진다
 - ② $an heta = rac{V^2}{gd}$: 액면의 수직선과 화염축 사이 각 heta의 an값은 퐁속 extstyle extstyle an값은 공속 extstyle an 하고 용기직경 extstyle an 반비례

6. Pool Fire의 영향인자

- (1) 액체의 특성
 - ① 혼합물인지의 여부 : 고온층(Hot Zone)을 형성을 좌우

- ② 액체의 기화잠열이 작을수록 연소속도가 빠르다
- ③ 액체의 복사 전열량이 클수록 연소속도가 빠르다
- ④ 액온 < 인화점 : 맥동적인 연소 확대
- ⑤ 액온 > 인화점 : 연소속도가 온도에 비례하여 증가
- (2) Pool의 직경
 - ① 용기의 직경은 연소초기의 대류가 주된 열전달인 경우에 영향이 크다
 - ② 일정 크기 이상에서는 용기 직경과는 무관
 - ③ 용기 크기는 원형으로 가정하며, 다각형인 경우에는 같은 크기의 면적을 가진 원 형으로 환산 한다
- (3) 화염의 높이 : 화염의 높이가 1m이상이 되면 복사가 열류를 지배함
- (4) 화염의 경사: 액면에 도달되는 복사량이 증대됨
- (5) 기하학적 배치 : pool fire와 목표물의 거리 및 위치
- (6) 대기 투과율 : 대기 중 수분함량에 의존
- (7) 복사량

7. 복사량 계산

- (1) 복사량 계산 절차도
 - ① pool fire 발생
 - ② 연소율의 추정
 - ③ 화염 높이 추정
 - ④ 최대 풀 지름 추정
 - ⑤ 복사 모델 선정
- (2) Fool fire 모델
 - ① Solid plume radiation 모델
 - : 화염의 표면에서 방사되는 열류[kw/m²]을 기준으로 해석하는 방법
 - ② Point source radiation 모델
 - : 화염의 중앙 지점에서 방출되는 총 연소에너지 방출율을 기준으로 화재를 해석하는 방법

문제10) 가연성 액체의 액면상의 거동(Fire Spread)

1. 개념

- ① 가연성 액체의 액면상의 한 지점에서 착화가 일어나면 화염은 액면을 따라 일정한 속도로 전파한다. 이러한 현상을 화염의 연소 확대(Fire Spread)라 한다
- ② 화염 전파속도의 영향은 액체의 온도가 인화점 보다 높고, 낮음에 따라 화염 전파속 도가 변한다
- ③ 즉, 액면 상에서 증기와 공기가 혼합하여 연소하는 확산연소 형태의 화재이다

2. 액온이 인화점 보다 높은 경우

- (1) 액면상의 증기는 가연범위(연소범위, 폭발범위)에 있다
- (2) 화염은 증기층을 통하여 빠르게 전파 한다
- (3) 연소 확대 형태
 - ① 예 혼합형 화염전파
 - ② 액온이 높을수록 전파속도는 빨라진다
 - ③ 탄화수소, 알콜의 전파속도는 2[m/sec] 전후
- (4) 전파속도

$$V=A\circ S_uigg(rac{
ho_u}{
ho_f}igg)^{rac{1}{2}}$$
여기서, V : 전파속도, $A:2\sim3$, $S_u:$ 층류 연소속도 $ho_u:$ 액온에서의 증기밀도, $ho_f:$ 화염온도에서의 증기밀도

3. 액온이 인화점 보다 낮은 경우

- (1) 액면상의 증기는 가연범위(연소범위, 폭발범위)에 들어 있지 않다
- (2) 착화 후 시간 경과에 의하여 액면이 예열되고 가연성 혼합기가 형성되어 연소 확대
- (3) 연소 확대 형태
 - ① 예열형 화염전파
 - ② 표면장력 구동류에 의한 열전달 : 액표면의 대류 현상
 - ③ 가속과 감속을 반복하는 맥동적 연소 확대 현상
- (4) 연소 확대 구조
 - ① 고온의 표면장력 구동류에 의하여 저온의 미연액체가 가열
 - ② 액온이 인화점 이상 상승하여 가연성 증기 발생
 - ③ 가연성 증기와 공기가 혼합하여 가연성 혼합기 형성
 - ④ 화염은 가연성 혼합기가 형성된 위치까지 순간적으로 확대

4. 소화대책

- ① 포 방출에 의한 질식, 냉각소화
- ② 가스소화설비에 의한 질식, 냉각소화(Soaking Time이 필요)

문제11) 경질유 및 중질유 탱크화재의 특성

1. 경질유와 중질유 비교

구 분	경 질 유	중 질 유	
증기압	20[℃], 5[mmHg] 이상	20[℃], 5[mmHg] 미만	
종 류	휘발유, 등유	원유, 중유	
비 점	낮다	높다	
증기공간	증기공간이 상온에서 연소범위	증기공간이 상온에서 연소범위의	
	를 형성(매우 위험)	이하가 되어 농도가 희박	
적용탱크	FRT, Vavor Space Tank CRT		
특 징	액면화재의 액면강하속도	비점이 높은 고온층의 연소속도	
화재현상	BLEVE, UVCE	Boil Over, Slop Over	
예방대책	증기공간을 제거	물분무설비, Vent 및 화염방지기	
	불활성가스를 주입	출군구글미, VOIL 곳 와임당시기	

2. 경질유 탱크화재

- (1) 경질유의 특징
 - ① 경질유는 비점이 낮으며, 증기압이 20[℃], 5[mmHg] 이상인 휘발유나 등유와 같은 가연성 액체를 말한다
 - ② 증기압이 높은 액체의 저장은 압력탱크를 이용한다
 - ③ 증기압이 5[mmHg] 이상인 범위의 액체는 증기공간이 상온에서 연소범위를 형성 하므로 매우 위험하다
- (2) 화재 특성
 - ① 휘발유, 등유 등 저 비점을 가지고 있는 유류 탱크 화재
 - ② 유류가 급속히 기화하여 공기와의 혼합기가 급격한 속도로 연소
 - ③ 고온층의 형성이 없고, 화재 중에 탱크에 폭발, 파열 위험이 없다
 - ④ 특별한 소화 작업 없이 유류의 소진에 따라 자연히 진화된다
- (3) 경질유의 재해형태
 - ① Confined Explosion(밀폐 공간 폭발)
 - ② BLEVE(비등액체팽창증기폭발)
 - ③ UVCE(자유공간 증기운 폭발)
- (4) 예방 및 방지대책
 - ① 증기공간을 제거: FRT, Vapor Dome Roof Tank, Lifter Roof Tank를 이용
 - ② 불활성 가스 주입 : 증기 공간

3. 중질유 탱크화재

- (1) 중질유의 특징
 - ① 중질유는 비점이 높다
 - ② 증기압이 20[℃], 5[mmHg] 미만이 되는 원유나 중유와 같은 가연성 액체를 말 한다

(2) 화재 특성

- ① 원유, 중유 등 넓은 비점 범위를 가지고 있는 유류 탱크 화재
- ② 화재 시 경질성분의 연소에 의해 중질화 되어 150℃ 이상으로 온도가 상승하여 고온층을 형성하며, 연소시간의 경과와 더불어 고온층의 두께가 증가한다
- ③ 중질성분의 고온층이 비중차에 의해 밑으로 전파하는 열유층을 열파(Heat Wave) 라 한다
- ④ 고온층이 탱크 저부에 도달하여 물과 접촉 시 Boil Over현상이 발생한다
- ⑤ 액면의 고온층에 소화수 주수 시 Slop Over현상이 발생 한다
- ⑥ 고온층이 하강하는 속도를 고온층 연소속도(하강속도, Heat wave settling ration) 라 하며, 보통 15~50[in/hr]이다
- (3) 중질유의 재해형태
 - Boil Over
 - ② Slop Over
- (4) 예방 및 방지대책
 - ① CRT(Cone Roof Tank)에 저장
 - ② 주위 화재로부터 복사열 차단을 위한 물 분부설비(Water Spray System)를 설치
 - ③ Flame Arrester를 설치하여 주위 화염으로부터 착화를 방지

문제12) Boil Over

1. 개념

- (1) 유류탱크 화재 시 열파(Heat Wave)가 탱크 저부로 전파(침강)하여 저부에 고여 있는 물과 접촉 시 물이 급격히 증발하여 대량의 수증기가 상층의 유류를 밀어 올려 거 대한 화염을 발생시키는 동시에 불이 붙은 다량의 기름을 탱크 밖으로 방출하는 현상이다
- (2) Boil Over의 문제점
 - ① 불붙은 유류의 분출에 의한 소방대의 인명 피해 발생
 - ② 불붙은 유류의 분출에 의한 유출유 화재로 인접 탱크 및 대상물로의 연소 확대
 - ③ 현장 접근의 불가능으로 소화작업의 곤란

2. Boil Over의 발생 시간 예측

- (1) 연소속도 측정
- (2) 고온층 연소속도 측정, 즉 연소속도와 고온층 전파속도는 저장된 유류의 물성을 통해 미리 알 수 있다
- (3) 고온층의 위치 파악
 - ① 탱크 외벽에 물을 주수하여 물이 마르는 상태로 위치 확인
 - ② $T = \frac{H}{2}$ 여기서, T: 보일오버 발생시간(hour) H: 액 표면에서 수층까지 깊이(hour)

3. Boil Over의 원인

- ① 탱크 내용물이 원유, 중유 등 넓은 범위의 비점을 가진 유류일 것
- ② 유류가 적당한 점성과 표면장력을 가질 것
- ③ 고온층이 생성될 것
- ④ 탱크 저부에 수분이 존재할 것

4. Boil Over의 방지대책

- ① 탱크 저부의 수분 생성 방지
- ② 탱크 저부에 있는 수분의 정기적인 배수
- ③ 수분과 기름의 교반(에멀젼화)
- ④ 물의 과열 방지: 적당한 시기에 모래, 팽창석(비등석) 등을 투입
- ⑤ 방유제를 설치하여 유출유 화재로 인한 연소 확대 방지
- ⑥ 물 분무설비(Water Spray System)을 설치하여 탱크로의 입열 방지

문제13) Slop Over, Froth Over

1. Slop Over

- (1) 개념
 - ① 고온의 액면에 소화를 위해 물 분무 또는 포 소화설비를 사용하여 수분을 가하게 되면, 분사된 수분이 급격히 증발되면서 유면에 거품이 발생된다
 - ② 열류의 교란이 발생되어 고온층 아래의 차가운 기름이 급속히 열 팽창하여 유류 가 불이 붙은 상태로 탱크 밖으로 분출된다
 - ③ 이것은 유류의 점도가 높고 유온이 물의 비등점보다 높을 때 발생되며 이를 Slop Over라 한다
- (2) 문제점
 - ① 불붙은 유류의 분출에 의한 소방대의 인명 피해 발생
 - ② 불붙은 유류의 분출에 의한 유출 유 화재로 인접 탱크 및 대상물로의 연소 확대
 - ③ 현장 접근의 불가능으로 소화 작업의 곤란
- (3) 방지대책
 - : 소량의 물 분무 또는 포를 방사하면서 작은 Slop Over를 발생시키면서 고온의 액 체를 냉각 시킨다

2. Froth Over

- (1) 개념
 - ① 화재 외의 경우에도 물이 고점도 유류와 접촉하면 급속히 비등하여 거품과 같은 형태로 넘치는 현상이다
 - ② 전형적인 예로 뜨거운 아스팔트가 물이 약간 고여 있는 무개 탱크차에 주입될 때 발생된다
 - ③ 고온의 아스팔트의 주입으로 물이 가열되어 끊기 시작하면서 비등하여 탱크의 지붕을 날려버리고 물과 기름이 튀어나가게 된다
- (2) 문제점
 - ① 고온의 물과 기름이 날아가 인명피해 등을 발생
 - ② 고온의 유류가 외부로 배출되어 연소가 발생
- (3) 방지대책
 - : 탱크차에 물이 고여 있지 않도록 배수설비를 설치하고 물을 완전히 제거한 뒤에 아 스팔트 등을 주입 시킨다

문제14) 위험물 저장탱크의 종류별 화재특성과 화재진압대책

1. 위험물 저장탱크의 특성

- (1) CRT(Cone Roof Tank)
 - ① 원추형 고정지붕을 가진 탱크로서 설치비가 저렴하여 가장 많이 사용
 - ② 제품 입출고시 Filling Loss가 발생
 - ③ 저장 시 일교차에 의해 Breathing Loss가 발생하여 제품의 증발손실이 크므로 증기압이 높은 제품의 저장에는 적합하지 않다
- (2) FRT(Floating Roof Tank)
 - ① 액 표면 위에 액면과 같이 움직이는 부유지붕을 설치
 - ② 탱크 내부의 증기공간을 없앤 것으로서 증발손실을 막을 수 있다
 - ③ 화재예방 효과가 크며 화재시 소화가 용이하다
 - ④ 설치비가 고가이며 눈 또는 비가 많이 내리는 지방에는 부적합하다
- (3) IFRT(Internal Floating Roof Tank)
 - ① CRT 내부의 액 표면 위에 액면과 같이 움직이는 부유지붕을 설치한 탱크
 - ② CRT를 증기압이 높은 제품으로 교체하거나 빗물 등이 유입되어서는 안되는 증기 압이 높은 제품을 저장할 경우에 사용한다
 - ③ IFRT는 증발손실 감소와 화재예방에 효과가 크다
 - ④ 부유지붕의 Sealing상태가 양호하지 않을 경우 지붕에 설치된 대구경의 Free Vent를 통하여 공기가 유입되어 증발손실이 증대됨은 물론 인화, 폭발 위험이 증가 함
- (4) Variable-Vapor Space Tank
 - ① 저장탱크의 증기 공간 부피가 변화될 수 있도록 하여 일교차 등에 의한 Breathing Loss를 줄일 수 있도록 한 형태로 저장탱크의 회전수(Turn Over)가 1년 에 6회 이하로 적은 경우에 주로 사용된다
 - (2) Lifter Roof Tank
 - : 지붕 자체가 움직일 수 있도록 함으로써 증기 공간 부피가 변할 수 있도록 하여 증기손실을 줄일 수 있도록 한 형태
 - ③ Flexible-Diaphram Tank
 - : Diaphram을 설치하여 증기공간의 부피가 변할 수 있도록 한 형태

2. 위험물 저장탱크별 화재특성

- (1) CRT(Cone Roof Tank)
 - ① 액면 상부에는 화재 이전에 가연성 증기가 다량 존재하므로 화재 시 대부분 초기 에 폭발이 동반된다
 - ② 지붕은 탱크 벽면과 약하게 접합되어 있어 초기 폭발 시 날아가 버린다
 - ③ 폭발 후, 화재는 액 표면 전체에서 진행되며 Pool Fire형태를 보인다
 - ④ Pool Fire시 다 비점 액체의 경우 Boil Over가 발생될 수 있다

- ⑤ 또한, 진화 시 소화용수나 포가 주입되면 Slop Over도 발생될 수가 있다
- (2) FRT(Floating Roof Tank)
 - ① 증기공간을 없앤 부유지붕으로 화재는 증기발생이 가능한 지붕과 벽면사이의 환 상 Seal 부분에서 발생되어 원형 띠 형태로 확산된다
 - ② 진화 시 너무 많은 포를 살포하면 부유지붕이 가라앉아 화재 확대의 우려가 있어 주의해야 한다
- (3) IFRT(Internal Floating Roof Tank)
 - ① 화재초기에는 FRT와 같이 환형화재
 - ② 화재가 지속되면 부유지붕이 변형되어 가라앉아 CRT형태의 화재로 진행

3. 화재시 대응방법

- (1) CRT 및 IFRT 화재
 - ① 저장된 유류를 안전한 장소로 이송(제거소화개념)
 - ② 지면 화재의 소화 : 소화기나 보조포 소화전으로 탱크 주위 화재를 진화
 - ③ 탱크 유면에 포 방출
 - : 설치된 고정포 소화설비로 포를 방사하여 소화 및 액면 보호
 - ④ 탱크 벽면에 물 분무 설비로 물을 방사하여 냉각
 - ⑤ 인접된 탱크에 물 분무 설비로 복사열 차단
 - ⑥ 인접탱크 냉각수 살포시 가열되지 않는 상태에서는 불필요한 살포는 유의
 - ⑦ Hot Zone형성 시 유류를 고속으로 순환시켜 고온층 제거, 포를 간헐적으로 주입하여 소규모 Slop Over를 발생시키며 열류층을 냉각
- (2) FRT 화재
 - ① 화재초기에는 소형 소화기로 진화
 - ② 환상부로 확대 시 설치된 특형 소화설비로 진화
 - ③ CRT와 같이 저장물을 안전한 장소로 이송, 복사열 차단 (포 소화 약제를 너무 많이 주입하지 말 것)

문제15) Ring Fire(윤화)

1. 정의

- ① 화재가 발생한 대형 유류탱크 소화 시 화염이 솟는 유면에 포를 방사하였을 때 탱크 중심부는 화염이 소거되어도, 탱크 바깥쪽은 외벽을 따라 환상으로 불이 붙어있는 현상이다
- ② 원인은 가열된 탱크의 열전도로 포소화약제가 파괴되어 발생된 증기가 포를 뚫고 상승하여 재 발화하는 현상이다

2. 원인

- ① 유류 저장탱크에 방출된 포가 가열된 탱크 외벽에 의해 파포 되었을 때, 즉 포의 내열성 감소가 원인이다(수성막포나 합성계면활성제포 등)
- ② 탱크 외벽 상부의 열이 벽면을 따라 열전도 되어 유면 가열에 의해 비점과 인화점이 낮은 액체의 증기가 포를 뚫고 상승하여 재 발화하는 현상이다

3. 문제점

- ① Ring Fire 에 의하여 탱크 중심부로 화재가 재 확대된다
- ② 재발화로 인해 소화 시간이 지연된다

4. 대책

- ① 탱크 벽면에 Water Spray System을 설치하여 벽을 냉각시키면서 포를 투입
- ② 내열성의 안정된 포의 사용 : 불화단백포 등

※ 기출문제분석7(Fire Spread관련)

- 1. 유류 화재에 있어서의 Fire-Spread를 설명하시오(45회,10점)
- 2. 가연성 액체 연소에서 액온이 인화점보다 높을 때의 화염전파 관계를 설명하시오(45회,20점)
- 3. 가연성 액체의 액면상의 연소 확대에 대해 액온이 인화점보다 높을 경우와 낮을 경우를 나누어 설명하시오(36회,25점)

※ 기출문제분석8(석유류화재관련)

- 1. Pool Fire에서 화염 높이에 영향을 주는 인자에 대해 설명하시오(59회,5점)
- 2. 액면화재에서 석유가 메탄올보다 연소 속도가 빠른데 그 이유를 설명하라(45회,20점)
- 3. 대형저장용기에서 Pool Fire시 알코올이 휘발유, 등유보다 연소속도가 느려서 화재지속시간이 길다. 그이유를 설명하시오(66회,10점)
- 4. 경질류 탱크 화재와 중질유 탱크 화재의 특성에 대해 설명하시오(62회,10점)
- 5. CRT, FRT, IFRT의 화재특성과 화재 진압 시 행동 요령을 설명하시오(68회,25점)
- 6. 석유(특히, 비점범위가 넓은 원유)를 저장하고 있는 탱크에서 화재가 발생하는 경우, 다음과 같은 현상이 일어날 위험이 있는 바, 이들 현상에 대하여 설명하시오(35회,20점)
 - ① Boil Over(10점)
 - ② Fire Plume(10점)
- 7. 액면화재의 2가지 현상에 대하여 설명하라(43회,20점)
- 8. 석유류 탱크의 화재발생 진행시 물이 원인이 된 넘침 현상에 대하여 설명하라(43회,20점)
- 9. 중질유 탱크화재 시 발생하는 Boil Over, Slop Over, Froth Over에 대해 설명하시오(87회,25점)
- 10. 윤화(Ring fire)현상을 설명하고 그 발생원인 및 대책을 기술하시오(87회,10점)

※ 기출문제분석9(위험물관련기타)

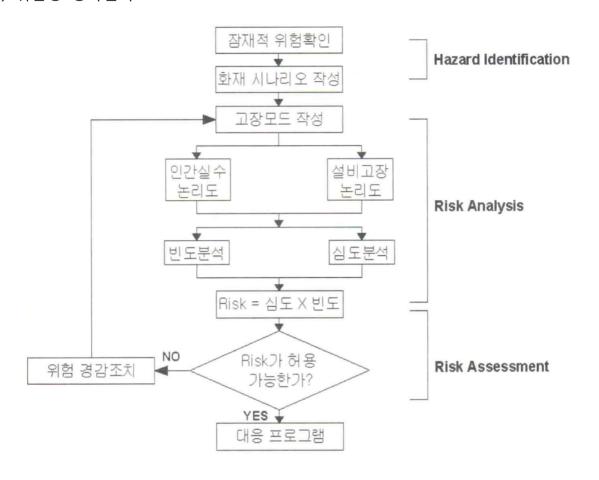
- 1. 위험물의 착화위험성 시험방법과 판정기준에 대하여 기술하시오(84회,25점)
- 2. 다음 위험물의 성상, 저장, 소화, 취급 사람에 미치는 영향 및 기타의 특성에 대하여 기술하시오(38회,20점) ① 액화수소 ② 액화천연가스
- 3. 소방법규 상 특수가연물 종류, 수량, 취급 방법을 설명하시오(56회,20점)
- 4. 인화성 고체를 설명하시오(60회,10점)
- 5. 특수위험물 판매취급소의 작업실의 안전을 확보하기 위한 소방기술기준에 관한 규칙에서 정하는 내용을 중심으로 기술하시오(69회,25점)
- 6. 위험한 물질의 운송(도로, 철도 및 항공)에 대한 국내 기준과 미국 DOT기준을 비교 설명하시오(57회,20점)
- 7. 위험물 폐기작업 시 유의사항을 기술하시오(57회,20점)
- 8. 액체산소 저장요령을 설명하라(42회,5점)
- 9. Oil Quenching은 금속의 열처리 방법의 하나이다. 이 작업에 대한 화재 폭발 위험의 3가지 형태와 각각의 안전대책을 논하시오(72회,25점)
- 10. 농어촌지역에 펄프제조공장을 건설하고자 한다. 이 공장의 에너지원의 일부를 석유류를 사용하기로 하고 옥외탱크 저장소를 설치하려는데 현행 소방법에 의거 검토되어야 할 사항을 상술하시오(38회,20점) (단, 저장용량 500,000 × 2기, 탱크 직경 10m, 원추형 고정식 지붕으로 한다)
- 11. 현저하게 소화가 곤란한 옥외탱크저장소를 설명하시오(51회,10점)

문제16) Risk, Hazard

1. 개념

- (1) Risk(위험도)
 - ① 손해발생의 가능성(chance of loss)과 불확실성(uncertainty)을 의미
 - ② 가능성은 위험은 항상 존재하며, 불확실성은 그 위험이 언제, 어떻게, 어떤 크기로 전개될 것인가는 불확실하다는 개념
 - ③ 위험의 추상적인 개념으로서 보험의 기본개념. 즉, 보험은 불확실성에 어느 정도의 부여하려는 사회적 장치이다
 - ④ Risk 표현방법
 - ③ Risk = Frequency(빈도) × Severity(강도)
 - © Risk = Consequence(결과) × Probability(확률)
- (2) Hazard(위험성)
 - ① 사고(손해)의 빈도 또는 강도를 증가시킬 수 있는 행위, 조건, 상황 등을 의미
 - ② 특정사고가 발생될 경우 그 사고에 의한 피해 정도
 - ③ 보험에 있어서 위험측정의 요소 및 척도와 관련된다
- (**3**) Peril(위험)
 - ① 손해의 직접적이 원인이 되는 사건·사고 및 사고의 결과 손해를 발생하게 하는 것을 의미(Cause of loss)
 - ② 직접적인 손해를 발생시키는 화재 · 폭발 등을 의미한다

2. 위험의 구체적인 예


- ※ "운전이 미숙한 운전자가 얼어붙은 도로를 과속으로 주행하다 미끄러져 마주오는 트 럭과 정면충돌했다"는 상황을 가정할 경우
- ① Risk는 실제 사고와는 관계없이 교통사고의 가능성, 불확실성을 의미한다
- ② Peril은 "충돌사고" 그 자체를 의미한다
- ③ Hazard는 "미숙한 운전자", "얼어붙은 도로", "과속주행" 등 충돌사고가 일어날 수 있던 원인이나 조건 등을 의미한다

 ※ 기출문제분석1(Risk,Hazard관련) 1. 위험성(Hazard)과 위험도(Risk)의 차이점을 설명하라(48회,10점) 2. Hazard and Risk를 설명하시오(58회,5점) 3. 방화공학 측면에서 위험성(Hazard)과 위험도(Risk)의 차이에 대하여 기술하시오(69회,10점) 4. 화재위험도지수에서 심도 × 빈도에서 화재심도에 대해 설명하시오(57회,10점) 	

문제17) 위험성평가 절차

1. 개요

- (1) 위험성 평가는 크게 위험성 확인(Hazard Identification), 위험도 분석(Risk Analysis), 위험도 평가(Risk Assessment)의 절차에 의해 수행된다
- (2) 위험성 평가절차

2. 위험성 확인(Hazard Identification)

- (1) 개념
 - ① 잠재적인 화재위험성을 파악하는 것으로 위험분석의 대상을 확인하는 과정
 - ② 주로 발생 가능한 화재시나리오를 확인하는 과정으로서, 정성적 위험분석 기법이 사용된다
- (2) 정성적 위험분석기법의 종류
 - ① 사고 예상 질문 분석법(What-if): 질문표에 의한 위험성 평가기법
 - ② 체크 리스트법(Checkist): 체크리스트에 의한 점수에 의한 평가기법
 - ③ 이상위험도 분석법(FMECA): 일탈현상에 의해 발생되는 위험도 분석기법
 - ④ 작업자실수 분석법(HEA): 작업자의 실수에 대한 영향 분석기법
 - ⑤ 위험과 운전성 분석(HAZOP)
 - : 의도에 벗어나는 공정상의 일탈현상을 찾아내어 공정의 위험요소와 운전상의 문

제점을 도출해 내는 기법

- ⑥ 안전성 검토법(Safety Review)
 - : 운전 및 유지관리 절차가 설계목적이나 안전기준에 부합되는지를 분석하는 기법
- ⑦ 예비위험 분석법(PHA)
 - : 초기에 미리 위험요소를 검출하여 나중에 발견되는 손해를 방지하는 기법
- ⑧ 상대 위험순위 판정법(D&M Indices)
 - : 각 사항별로 위험정도를 순위로 평가하는 기법
- ※ 일탈(逸脫): 정하여진 영역 또는 본래의 목적이나 길, 사상, 규범, 조직 따위로부터 빠져 벗어남

3. 위험도 분석(Risk Analysis)

- (1) 개념
 - ① 파악된 위험성이 얼마나 위험한지를 분석하여 그 위험을 정량화하는 과정
 - ② 즉, 위험성의 발생확률(빈도)과 크기(심도)를 수치로 분석하는 개념
 - ③ 사고빈도 분석: FTA, ETA, HEA
 - ④ 사고심도 분석: CCA, Severity Analysis
- (2) 정량적 위험성평가 기법
 - ① 결함수 분석법(FTA)
 - : 어떤 특정사고를 중심으로 하여 그 원인을 순차적으로 찾아내고, 그 발생확률을 산정하는 연역적 분석법
 - ② 사건수 분석법(ETA)
 - : 초기에 발생된 사건에서부터 마지막의 여러 가지 결과까지의 발생경로를 추론하여 발생확률을 산정하는 귀납적 분석법
 - ④ 사고원인 및 결과영향분석(CCA)
 - : 사고발생시 발생될 것으로 보이는 인명, 재산피해나 업무중단으로 인한 손실 등을 분석, 추산하는 분석기법
 - ③ 작업자실수 분석법(HEA): 작업자의 실수에 대한 영향 분석기법

4. 위험도 평가(Risk Assessment)

- (1) 개념
 - ① Risk의 주관적 판단 및 평가의 과정으로서, Hazard의 크기와 빈도를 어떻게 조합 하여 평가하는지를 결정하는 과정
 - ② 산출된 Risk를 어느 정도까지 수용할 것인지 주관적으로 판단하는 것으로 수용범위를 결정하기 위하여 실험적 방법, 수학적 방법, 상대순위방법 등이 이용된다
- (2) 위험도 평가기법(위험의 표현방법)
 - ① 위험도 매트릭스(Risk Matrix)
 - : 빈도와 심도를 축으로 한 격자형 도표상의 점으로 표시하여 위험등급을 평가
 - ② F-N 커브

- : 사고의 빈도와 위험의 영향을 받을 수 있는 인원수에 대한 그래프 상에 표시하여 위험등급을 평가(표현)
- ③ 위험도 형태(Risk profile)
 - : 위험지수, 개인별 위험성, 사회적 위험성 등의 가능성과 크기를 평가
- ④ 위험도 밀도커브
 - : 위험설비 주변의 위치별 인원 밀도에 의한 위험성을 그래프로 그려서 위험성 평 가

문제18) 정성적 평가방법(Hazard Identification)

1. What if(사고 예상 질문 분석법)

- (1) 질문표에 의한 위험성 평가기법으로 설계, 건설, 운전, 고장수리 단계에서 생길 수 있는 바람직하지 않은 결과를 조사하는 기법
- (2) 절차
 - ① 각 분야 전문가조직에 의해 What if 시작 질문을 사용
 - ② 공정에 잠재하는 사고를 확인
 - ③ 그 위험의 결과 및 위험을 줄이는 방법을 도출

2. Checklist(체크 리스트법)

- (1) 체크리스트에 의한 점수에 의한 평가기법으로 미리 준비한 Checklist를 활용하여 최소한의 위험도를 인지하는 기법
- (2) 장점
 - ① 미숙련 기술자도 적용 가능하며 사용이 쉽다
 - ② 빠른 결과를 제공한다
- (3) 단점
 - : 작성자의 경험에 의존하므로 주기적으로 Checklist를 검사 및 보완하여야 한다
- (4) 방법
 - : 각 항목별로 ○(양호), ×(불량), △(보완 필요)로 분류하여 위험등급, 발생빈도, 치명 도 등을 구분하여 관리한다

3. FMECA(이상위험도 분석법)

- (1) 일탈현상에 의해 발생되는 위험도 분석기법으로 Failure mode, Effect, Critical thinking을 표로 만들어 Failure mode와 그 영향을 파악하는 기법
- (2) Failure mode : 공정 · 공정장치가 어떻게 고장 났는가에 대한 설명 Effect : 고장에 대해 어떤 결과가 발생될 것인가(Failure mode의 결과) Critical thinking : Failure mode에 대한 위험도 순위
- (3) 단점
 - : 운전자의 실수는 확인되지 않는다(이유 : 공정 · 공정장치가 대상이기 때문)

4. HEA(작업자실수 분석법)

- (1) 작업자의 실수에 대한 영향 분석기법으로 사고를 일으킬 수 있는 실수가 생기는 상황을 찾아낸다
- (2) 공장의 운전자, 정비원, 기술자 등의 작업에 영향을 미칠만한 요소를 찾아내는 기법
- 5. HAZOP(위험과 운전 분석법)

- (1) 설계의도에서 벗어나는 일탈현상을 찾아내어 공정의 위험요소와 운전상의 문제점을 도출하는 기법으로서 각 분야별 전문가로 팀을 이루어 난상토론에 의한 잠재적 일 탈 현상을 도출한다
- (2) 장점
 - ① 체계적인 접근이 가능하다
 - ② 각 분야별 종합적인 검토가 이루어진다
 - ③ 정성적평가의 문제점을 많이 해소할 수 있다
- (3) 단점
 - ① 인원, 시간이 많이 소요 된다
 - ② 상황에 따라 다루어지지 않는 위험이 생길 가능성
 - ③ 인적 오류나 설비 자체 결함의 문제는 다루어지지 않음
- (4) 절차
 - ① 토론 전 숙련된 팀리더가 Study mode를 선정한 후
 - ② Guide word와 공정변수를 순서대로 조합 · 제시하여
 - ③ 각 분야 전문가의 토론을 통하여
 - ④ 위험요소와 운전상의 문제점을 토출한다
- (5) Guide word
 - ① No / Not : 설계의도의 완전한 부정
 - ② More / Less: 양의 증가/감소
 - ③ As well as : 정성적인 증가
 - ④ Part of : 정성적인 감소
 - ⑤ Reverse : 설계의도의 논리적인 역
 - ⑥ Other than : 완전한 대체
- (6) 공정변수
 - ① Flow

② 온도

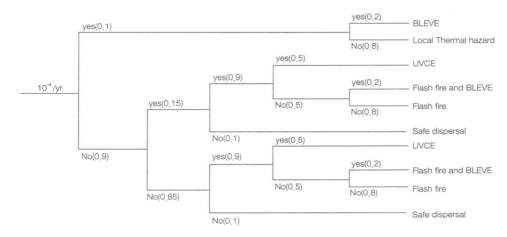
③ 압력

④ 시간 등

6. Safety Review(안전성 검토법)

- (1) 공장의 운전과 유지절차가 설계목적과 기준에 부합되는지 확인하는 기법
- (2) 전문적인 지식과 책임을 가진 조직에 의하여 수행된다

7. PHA(예비위험도 분석법)


- (1) 위험을 조기에 인식하여 위험이 나중에 발견되었을 때 소요되는 비용을 절약하는 기법이다
- (2) 사업초기에 실시함으로써 다른 평가기법보다 앞서 실시된다
- 8. Relative ranking, Dow & Indices(상대위험순위 결정법)
 - (1) 사고에 의한 피해정도를 나타내는 상대적 위험순위와 정성적인 정보를 얻을 수 있

는 기법이다

- (2) 절차
 - ① 공장에 존재하는 위험에 대해 Penalty와 Credit를 부여한다
 - Penalty : 사고를 일으킬 수 있는 조건에 대하여 부여한다
 - © Credit : 사고영향을 완화시키는 요건에 대하여 부여한다
 - ② Penalty와 Credit를 조합하여 공장의 상대위험순위를 결정하는 지표를 유도한다

※ 기출문제분석2(위험성평가기법관련)

- 1. 화재의 위험도 평가방법을 설명하라(42회,20점)
- 2. 화학공정에서의 대표적인 정성적 위험성 평가 방법의 종류를 기술하시오(69회,10점)
- 3. 공정의 화재위험성 평가의 의의를 기술하고, 수행절차와 흐름도를 도시하시오(69회,25점)
- 4. 공정위험평가방법에 대하여 5가지 이상 기술하시오(77회,25점)
- 5. 건물의 화재 위험성 평가(Fire Hazard Assesment)방법 중 화재안전개념 Tree방법과 Modeling을 이용한 방법에 대하여 설명하라(48회,20점)
- 6. 재해예방에서 FMEA(Failure Mode Effect Analysis)를 설명하시오(63회,10점)
- 7. 화학공장에서의 화재폭발 위험인지기법으로 활용되는 HAZOP(Hazard and Operability Study)에 대하여 기술하시오(41회,25점)
- 8. 공정 위험성 평가기법 중 HAZOP의 정의와 수행절차를 쓰시오(58회,30점)
- 9. 공정 위험성 평가기법 중 결함수 분석(Fault Tree Analysis)에 대하여 설명하고, 다음의 경우에 대해 결함수를 작성하시오(72회,25점) (강풍을 수반한 빗물 침입으로 창고에 저장된 화학물질이 발화되는 경우)
- 10. 화학공장에서의 사고결과 영향분석(Consequence Analysis)을 각 순서별 모델 및 Event에 대하여 기술하시오(69회,25점)
- 11. 다음 Event Tree에서 UVCE가 발생할 확률(%)을 구하시오(53회,20점)

커다란 LPG 누설에 대한 Event Tree

문제19) 정량적 평가방법(Hazard Analysis)

1. FTA(결함수 분석법)

- (1) 어떤 특정사고를 중심으로 하여 그 원인을 순차적으로 찾아내고, 그 발생확률을 산정하는 연역적 분석법
- (2) 절차
 - ① Fault Tree Diagram(사고·사건을 초래할 수 있는 장치의 이상과 고장의 다양한 조합을 표시하는 도식적 모텔)을 작성한다
 - ② 이로부터 사고·사건으로부터 사고를 일으키는 장치 이상 또는 운전자 실수의 상 관 관계를 도출한다
- (3) 장점
 - ① 정성적 기법과 달리, 논리적이고 확률적 위험성 평가
 - ② 사고요소의 상호관계 규명
- (4) 단점
 - ① 특정사고에 대한 분석
 - ② 소요시간 과다하게 걸림

2. ETA(사건수 분석법)

- (1) 초기에 발생된 사건에서부터 마지막의 여러 가지 결과까지의 발생경로를 추론하여 발생확률을 산정하는 귀납적 분석법
- (2) 절차
 - ① Event Tree Diagram(초기사건의 안전시스템에 대한 대응 성공 또는 실패에 따른 후속사건을 도식적으로 표시하는 모델)을 작성한다
 - ② 초기사건에서 후속사건까지의 순서 및 상관관계를 파악한다
 - ③ 정량적 가능성을 가진 정성적인 결과를 도출한다
- (3) 장점
 - ① 체계적 · 정량적 분석
 - ② 발생경로를 통한사고 유추(발생 가능한 사고 유추)
 - ③ 초기 오류에 대한 대처에 효과적이다
- (4) 단점
 - ① 발생 확률을 정하기 어렵다
 - ② 자료수집이 오래 걸린다

3. CCA(원인 · 결과 분석법)

- (1) 개념
 - ① 사고발생(화재, 폭발 등)시 발생될 것으로 보이는 인명, 재산피해나 업무중단으로 인한 손실 등 사고 결과에 의해 발생되는 영향을 분석, 추산하는 분석기법

- ② Hazard의 심도를 분석하는 것으로 FTA와 ETA를 혼합한 기법이다
- (2) Cause-Consequence Diagram의 절차

- ① 누출원 모델링(Source Term Modeling)
 - ① 누출용기의 상태, 누출 물질의 상(phase), 누출시간 등을 고려하며, 주된 사항은 인화성물질의 누출량이다
 - © 액상, 기상, 고상 누출 등으로 분류한다
 - © 액상 누출은 주로 Pool fire모델 또는 분산 모델을 적용하며, 기상누출은 주로 Jet fire모델 또는 분산 모델을 적용한다
 - ◎ 유체역학에 의해 모델링이 가능하다
- ② 분산 모델링(Dispersion Modeling)
 - 순간 누출 : 용기 등의 갑작스런 파열
 - © 연속 누출 : 틈새, 누출공에서의 장시간 누출
 - ◎ 기상으로의 확산, 무거운 가스의 증기운 형성, 액면 확대 등
- ③ 화재 모델링(Fire Modeling)
 - ☐ Fire ball, Pool fire, Jet fire, Flash fire 등
 - © 순간적 기화에 의한 점화(대량 순간누출): Fire ball, Flash fire
 - © 분출되는 가스에 점화 : Jet fire
 - ② 유출된 액체가 웅덩리 등에서의 점화 : Pool fire
- ④ 폭발 모델링(Explosion Modeling)
 - → BLEVE Modeling : 사람이나 구조물에 폭발 과압을 추정하기 위해 사용하며 T NT당량을 이용하여 추정한다
 - © 증기운폭발 모델(Vaper Cloud Explosion Modeling)
 - : 거리에 따른 과압의 감쇄는 TNT와 비숫하다고 가정한 TNT등가모델(TNT Equivalency Model)과 TNO멀티에너지를 이용하여 추정한다
- ⑤ 사고영향 모델링(Effect Modeling)
 - ③ 확산, 화재, 폭발 모델링에 의해 예측된 사항을 토대로 하여 그 영향(피해)을 예 측

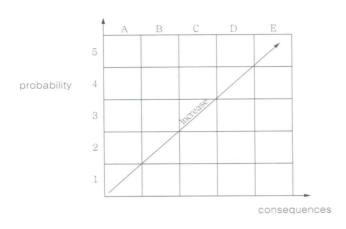
- 복사열의 영향 : 구조물, 인명 피해 발생
- ◎ 과압 형성의 영향 : 주변 구조물의 파손
- ◎ 폭풍파, 비산물의 영향
- □ 기타 열, 연기, 확산가스에 의한 영향

(3) 장점

- ① 사고원인과 결과 사이의 상관관계를 효과적으로 표현할 수 있다
- ② 연속적인 공정에서의 조업중단 및 재개에 적용된다
- ③ 사고 피해의 발생을 지연시킬 수 있다

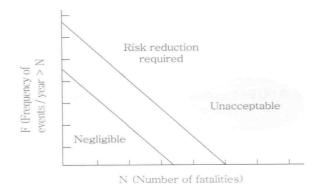
(4) 단점

- ① 적절한 모델 선정이 어렵다
- ② 데이터가 부족하여 추정값에 의존하는 경우가 많다
- ③ 정량적, 정성적 분석이 모두 필요하며 상당한 지식이 요구된다


※ 기출문제분석3(CA기법관련)

- 1. 화학공장에서 화재 위험성을 평가하기 위한 화재 모텔링(Pool Fire, Jet Fire, BLEVE등)에 대하여 논하시오 (72회,25점)
- 2. 화학공정 위험평가에 활용되는 폭발모델(TNT 당량, TNO 멀티에너지)을 간략히 설명하고, 피해를 예측하는 절차를 기술하시오(78회,25점)
- 3. 방유제(Dike)시설이 잇는 인화성액체 저장탱크에서 급격한 누출로 액면화재(Pool Fire)가 발생하였다. 인 근 주변시설에 미치는 최대 복사열량(Maximum Radiant Flux)의 크기를 산출하는 과정을 세부 검토항목을 포함하여 단계적으로 기술하시오(88회,25점)
- 4. 국내 산업안전기준(KOSHA CODE p-31)에 규정된 사고 피해예측기법 내용 중 확산, 화재(복사열) 및 폭발(과압)의 위험정도 여부를 판단할 수 있는 위험판정 기준에 대하여 기술하시오(88회,25점)
- 5. 화학공장의 화재폭발 시 독성물질의 누출 및 확산피해를 예측하는데 사용되는 화학물질폭로영향지수 (Chemical Exposure Index, CEI)의 산정에 필요한 비상대응계획 수립지침(Emergency Response Planning Guideline, ERPG)에 대하여 설명하시오(90회,25점)

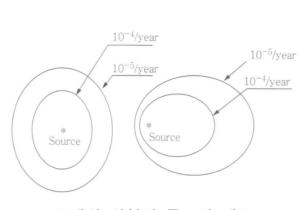
문제20) 위험의 표현방법


1. 위험도 매트릭스(Risk Matrix)

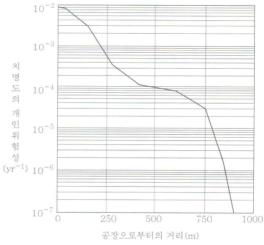
- (1) 개념
 - ① 빈도와 심도를 축으로 한 격자형 도표상의 점으로 표시하여 위험등급을 평가
 - ② X축에 사고 크기를 Y축에 사고의 빈도를 단계로 나누어 표시함으로써 위험도를 등급으로 표시하는 방법
 - ③ 위험등급은 사고의 크기와 빈도를 기초로 하여 1등급에서 5등급으로 구분한다
- (2) 위험도 매트릭스의 예

2. F-N 커브(Frequency-Number)

- (1) 개념
 - ① 사고의 빈도와 위험의 영향을 받을 수 있는 인원수에 대한 그래프 상에 표시하여 위험등급을 평가(표현)
 - ② 누적 빈도 대 사상자의 숫자로 표현되는 도표인데 통상적으로 Frequency-Number 로 나타낸다
 - ③ ALARP(As Low as Reasonably Practical) : 위험도는 크게 허용불가 영역, 허용가능 영역, 무시가능 영역으로 분류하고 무시가능 영역이 아니라면 위험도는 최소한 허용가능 영역으로 관리하도록 요구하고 있다
- (2) F-N 커브의 예



3. 위험도 형태(Risk profile)


- (1) 개념
 - : 위험지수, 개인별 위험성, 사회적 위험성 등의 가능성과 크기를 평가
- (2) 위험지수(Risk Indices)
 - ① 단순히 위험의 정도를 제시하는 간단한 숫자 또는 도표이다
 - ② 위험지수를 절대적으로 사용하는 예는 FAR(Fatal Accident Rate)가 있다
 - ③ FAR는 108 노출시간에 대한 계산된 치명도 숫자이며 평균 개인 위험성이 1년을 기준으로 하는 것과 차이가 있다. 즉, 108/(24×365)인 1.14×104을 곱해줘야 한다

(3) 개인별 위험성

- ① 특정 장소에서 어떤 부류에 속한 개인 또는 사고의 영향을 받는 지역의 평균 개인의 위험성을 측정한다
- ② 개인 위험성 등고선(Individual Risk contours)은 개별적인 위험의 지역적인 분포 도이다
- ③ 개인 위험성 Profile은 위험원으로부터 거리의 함수로 개인 위험성을 도시한 것으로 위험과 거리와의 관계로 표시한다

〈개인 위험성 등고선 예〉

〈개인 위험성 Profile 예〉

(4) 사회적 위험성

- ① 집단에 속한 사람들에 미치는 위험성을 말하며 다양한 사건의 발생 빈도 분포로 표현된다
- ② 사회적 위험성 계산에는 위험지역에 사람이 존재할 가능성 또는 피해 최소화 대책의 요소가 포함되어야 한다
- ③ 개인 또는 사회적 위험성은 위험의 감소 대책, 장점을 평가하거나 치명도의 허용 기준을 판단하는데 중요하다

※ 기출문제분석5(위험성평가기타)

- 1. 위험분석(Risk Analysis)과 위험평가(Risk Assessment)를 구분하여 설명하시오(78회,10점)
- 2. 화학공정에 대한 정량적 위험분석(CPQRA) 절차에 포함되는 구성요소에 대하여 기술하시오(78회,25점)
- 3. 화학공장의 정량적 위험분석(Quantitative Risk Analysis, QRA)과 관련된 다음 항목에 대하여 각각 설명하시오(90회,25점)
 - 가. QRA를 실시하는 목적
 - 나. 위험도(Risk) 함수관련 인자
 - 다. QRA를 수행하는 단계별 과정
- 4. F-N(Frequency-Number) Curve에 대하여 기술하시오(69회,10점)
- 5. 최근 화학공장 중심으로 설계 및 시공 단계에서부터 검토 · 평가되고 있는 안전통합레벨(SIL: Safety Integrated Level)의 설정목적, 검토(Review)항목 및 검증(Verification)과정에 대하여 설명하시오(86회,25점)
- 6. 화재영향평가제도에 대하여 간단히 설명하고 화재영향평가에 포함되어야 하는 주요 항목을 쓰시오(71회,10점)
- 7. 건축규모가 지하 5층, 지상 10층, 연 면적 약 300,000㎡인 대형 판매시설에 대한 화재영향평가를 수행하고자 한다. 그 목적과 내용을 설명하시오(85회,25점)
- 8. 화재폭발위험성에 대한 화학공정(Chemical process)의 위험도 분석방법으로 폭넓게 적용되고 있는 Fire Explosion Index(F & EI)를 계산하는 다음과 같은 단계별 항목에 대하여 설명하시오(92회,25점)
 - 가. 분석대상 공정선정(Identify Process Unit)
 - 나. 가연물 지수산정(Material Factor)
 - 다. 일반공정 위험지수 산정(General Process Hazard Factor)
 - 라. 특수공정 위험지수 산정(Special Process Hazard Factor)
 - 마. F & EI 계산 방법
- 9. 소방 · 방재와 관련하여 여러 가지 재난이 일어나고 있고 또한 예측되어지고 있다. 자연재난, 사회적 재난 및 인위적 재난을 설명하고 재해위험의 3가지 요인인 재해(Hazard), 노출(Exposure), 재해취약요인 (Vulnerability)을 변화시켜 재해를 저감하는 방안에 대하여 설명하시오(92회,25점)