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0.1 Introduction

The year 1905 was Einstein’s magical year. In that year, he published three articles, on

light quanta, on the foundations of the theory of Special Relativity, and on Brownian

motion, each one separately worthy of a Nobel prize. Immediately after his work on

Special Relativity, Einstein started thinking about gravity and how to give it a rela-

tivistically invariant formulation. He kept on working on this problem during the next

ten years, doing little else. This work, after many trials and errors, culminated in his

masterpiece, the General Theory of Relativity, presented in 1915/1916. It is clearly one

of the greatest scientific achievements of all time, a beautiful theory derived from pure

thought and physical intuition, capable of explaining, still today, almost 100 years later,

virtually every aspect of gravitational physics ever observed.

Einstein’s key insight was that gravity is not a physical external force like the other

forces of nature but rather a manifestation of the curvature of space-time itself. This

realisation, in its simplicity and beauty, has had a profound impact on theoretical physics

as a whole, and Einstein’s vision of a geometrisation of all of physics is still with us today.

Of course, we do not have ten years to reach these insights but nevertheless the first

half of this course will be dedicated to explaining this and to developing the machinery

(of tensor calculus and Riemannian geometry) required to describe physics in a curved

space time, i.e. in a gravitational field.

In the second half of this course, we will then turn to various applications of General

Relativity. Foremost among them is the description of the classical predictions of Gen-

eral Relativity and their experimental verification. Other subjects we will cover include

the strange world of Black Holes, Cosmology, gravitational waves, and some intriguing

theories of gravity in higher dimensions known as Kaluza-Klein theories.

General Relativity may appear to you to be a difficult subject at first, since it requires

a certain amount of new mathematics and takes place in an unfamiliar arena. However,

this course is meant to be essentially self-contained, requiring only a basic familiarity

with Special Relativity, vector calculus and coordinate transformations. That means

that I will attempt to explain every single other thing that is required to understand

the basics of Einstein’s theory of gravity.

0.2 Caveats and Omissions

Invariably, any set of (introductory) lecture notes has its shortcomings, due to lack of

space and time, the requirements of the audience and the expertise (or lack thereof) of

the lecturer. These lecture notes are, of course, no exception.

These lecture notes for an introductory course on General Relativity are based on a

course that I originally gave in the years 1998-2003 in the framework of the Diploma
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Course of the ICTP (Trieste, Italy). Currently these notes form the basis of a course

that I teach as part of the Master in Theoretical Physics curriculum at the University

of Bern.

The purpose of these notes is to supplement the course, not to replace a text-book. You

should turn to other sources for other explanations, more on the historical and experi-

mental side, and exercises to test your understanding of these matters. Nevertheless, I

hope that these notes are reasonably self-contained and comprehensible.

I make no claim to originality in these notes. In particular, the presentation of much of

the introductory material follows quite closely the treatment in Weinberg’s classic

• S. Weinberg, Gravitation and Cosmology

(and I have made no attempt to disguise this). Even though my own way of thinking

about general relativity is somewhat more geometric, I have found that the approach

adopted by Weinberg is ideally suited to introduce general relativity to students with

little mathematical background. I have also used a number of other sources, including,

in particular, Sean Carroll’s on-line lecture notes

• http://pancake.uchicago.edu/~carroll/notes/

which have, in the meantime, been expanded into the lovely textbook

• S. Carroll, Spacetime and Geometry: An Introduction to General Relativity

Other books that I like and recommend are

• J. Hartle, Gravity: an Introduction to Einstein’s General Relativity

• E. Poisson, A Relativist’s Toolkit: the Mathematics of Black Hole Mechanics

• R. Wald, General Relativity

Sections marked with a * contain supplementary material that lies somewhat outside

the scope of a standard introductory course on general relativity and/or is not strictly

necessary for an understanding of the subsequent sections.

Further additions and updates to these notes are in preparation. I am grateful for

feedback of any kind: complaints, constructive criticism, corrections, and suggestions

for what else to include. If you have any comments on these notes, or also if you just

happen to find them useful, please let me know (blau@itp.unibe.ch).

I believe/hope that the strengths of these lecture notes are that

9



• they are elementary, requiring nothing beyond special relativity and calculus [to

be precise, by special relativity I mean the covariant formulation in terms of

the Minkowski metric etc.; special relativity is (regardless of what you may have

been taught) not fundamentally a theory about people changing trains erratically,

running into barns with poles, or doing strange things to their twins; rather, it is

a theory of a fundamental symmetry principle of physics, namely that the laws of

physics are invariant under Lorentz transformations and that they should therefore

also be formulated in a way which makes this symmetry manifest.]

• they are essentially self-contained,

• they provide a balanced overview of the subject, the second half of the course

dealing with a larger variety of different subjects than is usually covered in a 20

lecture introductory course.

In my opinion, among the weaknesses of this course or these lecture notes are the

following:

• The history of the development of general relativity is an important and complex

subject, crucial for a thorough appreciation of general relativity. My remarks on

this subject are scarce and possibly even misleading at times and should not be

taken as gospel.

• Exercises are an essential part of the course, but so far I have not included them

in the lecture notes themselves.

• In the first half of the course, on tensor calculus, no mention is made of manifolds

and bundles as this would require some background in differential geometry and

topology I did not want to assume.

• Moreover, practically no mention is made of the manifestly coordinate independent

calculus of differential forms. Given a little bit more time, it would be possible to

cover the (extremely useful) vielbein and differential form formulations of general

relativity, and a supplement to these lecture notes on this subject is in preparation.

• The discussion of the causal structure of the Schwarzschild metric and its Kruskal-

Szekeres extension stops short of introducing Penrose diagrams. These are useful

and important and, once again, given a bit more time, this is a subject that could

and ought to be covered as well.

• Cosmology is a very active, exciting, and rapidly developing field. Unfortunately,

not being an expert on the subject, my treatment is rather old-fashioned and

certainly not Y2K compatible. I would be grateful for suggestions how to improve

this section.
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• Something crucial is missing from the section on gravitational waves, namely a

derivation of the famous quadrupole radiation formula. If I can come up with,

or somebody shares with me, a simple five-line derivation of this formula, I will

immediately include it here.

• There are numerous other important topics not treated in these notes, foremost

among them perhaps a discussion of the canonical ADM formalism, a discussion of

notions of energy in general relativity, the post-Newtonian approximation, other

exact solutions, and aspects of black hole thermodynamics.

Including all these topics would require at least one more one-semester course and would

turn these lecture notes into a (rather voluminous) book. The former was not possible,

given initially the constraints of the ICTP Diploma Course and now those of the Bologna

system, and the latter is not my intention, since a number of excellent textbooks on

General Relativity have appeared in recent years. I can only hope that these lecture

notes provide the necessary background for studying these more advanced topics.
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Part I: Towards the Einstein Equations

1 From the Einstein Equivalence Principle to Geodesics

1.1 Motivation: The Einstein Equivalence Principle

First of all, let us ask the question why we should not be happy with the classical

Newtonian description of gravity. Well, for one, this theory is not Lorentz invariant,

postulating an action at a distance and an instantaneous propagation of the gravitational

field to every point in space. This is something that Einstein had just successfully

exorcised from other aspects of physics, and clearly Newtonian gravity had to be revised

as well.

It is then immediately clear that what would have to replace Newton’s theory is some-

thing rather more complicated. The reason for this is that, according to Special Rela-

tivity, mass is just another form of energy. But then, since gravity couples to masses,

in a relativistically invariant theory, gravity will also couple to energy. In particu-

lar, therefore, gravity would have to couple to gravitational energy, i.e. to itself. As

a consequence, the new gravitational field equations will, unlike Newton’s, have to be

non-linear: the field of the sum of two masses cannot equal the sum of the gravitational

fields of the two masses because it should also take into account the gravitational energy

of the two-body system.

But now, having realised that Newton’s theory cannot be the final word on the issue,

how does one go about finding a better theory?

I will first very briefly discuss (and then dismiss) what at first sight may appear to be

the most natural and simple approach to formulating a relativistic theory of gravity,

namely the simple replacement of Newton’s field equation

∆φ = 4πGρ (1.1)

for the gravitational potential φ given a mass density ρ by its relativistically covariant

version

∆φ = 4πGρ −→ 2φ = 4πGρ . (1.2)

While this looks promising, something can’t be quite right about this equation. We

already know (from Special Relativity) that ρ is not a scalar but rather the 00-component

of a tensor, the energy-momentum tensor, so if actually ρ appears on the right-hand-

side, φ cannot be a scalar, while if φ is a scalar something needs to be done to fix the

right-hand-side.

Turning first to the latter possiblility, one option that suggests itself is to replace ρ by

the trace T = Tαα of the energy-momentum tensor. This is by definition / construction
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a scalar, and it will agree with ρ in the non-relativistic limit. Thus a first attempt at

fixing the above equation might look like

2φ = 4πGT . (1.3)

This is certainly an attractive equation, but it definitely has the drawback that it is

too linear. Recall from the discussion above that the universality of gravity (coupling

to all forms of matter) and the equivalence of mass and energy lead to the conclusion

that gravity should couple to gravitational energy, invariably predicting non-linear (self-

interacting) equations for the gravitational field. However, the left hand side could be

such that it only reduces to 2 or ∆ of the Newtonian potential in the Newtonian limit

of weak stationary fields. Thus a second attempt at fixing the above equation might

look like

2Φ(φ) = 4πGT , (1.4)

where Φ(φ) ≈ φ for weak fields.

Such a scalar relativistic theory of gravity and variants thereof were proposed and

studied among others by Abraham, Mie, and Nordstrøm. As it stands, this field equation

appears to be perfectly consistent (and it may be interesting to discuss if/how the

Einstein equivalence principle, which will put us on our route towards metrics and

space-time curvature) is realised in such a theory. However, regardless of this, this

theory is incorrect simply because it is ruled out experimentally. The easiest way to see

this (with hindsight) is to note that the energy-momentum tensor of Maxwell theory

(5.28) is traceless, and thus the above equation would predict no coupling of gravity to

the electro-magnetic field, in particular to light, hence in such a theory there would be

no deflection of light by the sun etc.1

The other possibility to render (1.2) consistent is the, a priori perhaps much less com-

pelling, option to think of φ and ∆φ or 2φ not as scalars but as (00)-components of

some tensor, in which case one could try to salvage (1.2) by promoting it to a tensorial

equation

{Some tensor generalising ∆φ}αβ ∼ 4πGTαβ . (1.5)

This is indeed the form of the field equations for gravity (the Einstein equations) we

will ultimately be led to (see section 9.4), but Einstein arrived at this in a completely

different, and much more insightful, way.

Let us now, very briefly and in a streamlined way, try to retrace Einstein’s thoughts

which, as we will see, will lead us rather quickly to the geometric picture of gravity

sketched in the Introduction. He approached this by thinking about three related issues,

1. the equivalence principle of Special Relativity;

1For more on the history and properties of scalar theories of gravity see the review by D. Giulini,

What is (not) wrong with scalar gravity?, arXiv:gr-qc/0611100.
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2. the relation between inertial and gravitational mass;

3. Special Relativity and accelerations.

As regards the first issue, let me just recall that Special Relativity postulates a preferred

class of inertial frames, namely those travelling at constant velocity to each other. But

this raises the questions (I will just raise and not attempt to answer) what is special

about constant velocities and, more fundamentally, velocities constant with respect to

what? Some absolute space? The background of the stars? . . . ?

Regarding the second issue, recall that in Newtonian theory, classical mechanics, there

are two a priori independent concepts of mass: inertial mass mi, which accounts for

the resistance against acceleration, and gravitational mass mg which is the mass gravity

couples to. Now it is an important empirical fact that the inertial mass of a body is equal

to its gravitational mass. This is usually paraphrased as ‘all bodies fall at the same rate

in a gravitational field’. This realisation, at least with this clarity, is usually attributed

to Galileo (it is not true, though, that Galileo dropped objects from the leaning tower

of Pisa to test this - he used an inclined plane, a water clock and a pendulum).

These experiments were later on improved, in various forms, by Huygens, Newton,

Bessel and others and reached unprecedented accuracy with the work of Baron von

Eötvös (1889-. . . ), who was able to show that inertial and gravitational mass of different

materials (like wood and platinum) agree to one part in 109. In the 1950/60’s, this was

still further improved by R. Dicke to something like one part in 1011. More recently,

rumours of a ‘fifth force’, based on a reanalysis of Eötvös’ data (but buried in the

meantime) motivated experiments with even higher accuracy and no difference between

mi and mg was found.

Now Newton’s theory is in principle perfectly consistent with mi 6= mg, and Einstein

was very impressed with their observed equality. This should, he reasoned, not be a

mere coincidence but is probably trying to tell us something rather deep about the

nature of gravity. With his unequalled talent for discovering profound truths in simple

observations, he concluded (calling this “der glücklichste Gedanke meines Lebens” (the

happiest thought of my life)) that the equality of inertial and gravitational mass suggests

a close relation between inertia and gravity itself, suggests, in fact, that locally effects

of gravity and acceleration are indistinguishable,

locally: GRAVITY = INERTIA = ACCELERATION

He substantiated this with some classical thought experiments, Gedankenexperimente,

as he called them, which have come to be known as the elevator thought experiments:

1. Consider somebody in a small sealed box (elevator) somewhere in outer space. In

14



Figure 1: An experimenter and his two stones freely floating somewhere in outer space,

i.e. in the absence of forces.

the absence of any forces, this person will float. Likewise, two stones he has just

dropped (see Figure 1) will float with him.

2. Now assume (Figure 2) that somebody on the outside suddenly pulls the box up

with a constant acceleration. Then of course, our friend will be pressed to the

bottom of the elevator with a constant force and he will also see his stones drop

to the floor.

3. Now consider (Figure 3) this same box brought into a constant gravitational field.

Then again, he will be pressed to the bottom of the elevator with a constant force

and he will see his stones drop to the floor. With no experiment inside the elevator

can he decide if this is actually due to a gravitational field or due to the fact that

somebody is pulling the elevator upwards.

Thus our first lesson is that, indeed, locally the effects of acceleration and gravity

are indistinguishable.

4. Now consider somebody cutting the cable of the elevator (Figure 4). Then the

elevator will fall freely downwards but, as in Figure 1, our experimenter and his

stones will float as in the absence of gravity.

Thus lesson number two is that, locally the effect of gravity can be eliminated

by going to a freely falling reference frame (or coordinate system). This should

not come as a surprise. In the Newtonian theory, if the free fall in a constant
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Figure 2: Constant acceleration upwards mimics the effect of a gravitational field: ex-

perimenter and stones drop to the bottom of the box.
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Figure 3: The effect of a constant gravitational field: indistinguishable for our experi-

menter from that of a constant acceleration in Figure 2.
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Figure 4: Free fall in a gravitational field has the same effect as no gravitational field

(Figure 1): experimenter and stones float.
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gravitational field is described by the equation

ẍ = g (+ other forces) , (1.6)

then in the accelerated coordinate system

ξ(x, t) = x− gt2/2 (1.7)

the same physics is described by the equation

ξ̈ = 0 (+ other forces) , (1.8)

and the effect of gravity has been eliminated by going to the freely falling coordi-

nate system ξ. The crucial point here is that in such a reference frame not only

our observer will float freely, but he will also observe all other objects obeying the

usual laws of motion in the absence of gravity.

5. In the above discussion, I have put the emphasis on constant accelerations and

on ‘locally’. To see the significance of this, consider our experimenter with his

elevator in the gravitational field of the earth (Figure 5). This gravitational field

is not constant but spherically symmetric, pointing towards the center of the

earth. Therefore the stones will slightly approach each other as they fall towards

the bottom of the elevator, in the direction of the center of the gravitational field.

Thus, if somebody cuts the cable now and the elevator is again in free fall (Figure

6), our experimenter will float again, so will the stones, but our experimenter will

also notice that the stones move closer together for some reason. He will have to

conclude that there is some force responsible for this.

This is lesson number three: in a non-uniform gravitational field the effects of

gravity cannot be eliminated by going to a freely falling coordinate system. This

is only possible locally, on such scales on which the gravitational field is essentially

constant.

Einstein formalised the outcome of these thought experiments in what is now known as

the Einstein Equivalence Principle which roughly states that physics in a freely falling

frame in a gravitational field is the same physics in an inertial frame in Minkowski space

in the absence of gravitation. Two formulation are

At every space-time point in an arbitrary gravitational field it is possible

to choose a locally inertial (or freely falling) coordinate system such that,

within a sufficiently small region of this point, the laws of nature take the

same form as in unaccelerated Cartesian coordinate systems in the absence

of gravitation. (Weinberg, Gravitation and Cosmology)

and
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Figure 5: The experimenter and his stones in a non-uniform gravitational field: the

stones will approach each other slightly as they fall to the bottom of the elevator.
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Figure 6: Experimentator and stones freely falling in a non-uniform gravitational field.

The experimenter floats, so do the stones, but they move closer together, indicating the

presence of some external force.
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Experiments in a sufficiently small freely falling laboratory, over a sufficiently

short time, give results that are indistinguishable from those of the same

experiments in an inertial frame in empty space. (Hartle, Gravity).

There are different versions of this principle depending on what precisely one means by

‘the laws of nature’. If one just means the laws of Newtonian (or relativistic) mechanics,

then this priciple essentially reduces to the statement that inertial and gravitational

mass are equal. Usually, however, this statement is taken to imply also Maxwell’s

theory, quantum mechanics etc. What it asserts in its strong form is that

[. . . ] there is no experiment that can distinguish a uniform acceleration from

a uniform gravitational field. (Hartle, Gravity)

The power of the above principle lies in the fact that we can combine it with our

understanding of physics in accelerated reference systems to gain inisght into the physics

in a gravitational field. Two immediate consequences of this (which are hard to derive

on the basis of Newtonian physics or Special Relativity alone) are

• light is deflected by a gravitational field just like material objects;

• clocks run slower in a gravitational field than in the absence of gravity.

To see the inevitability of the first assertion, imagine a light ray entering the rocket /

elevator in Figure 1 horizontally through a window on the left hand side and exiting

again at the same height through a window on the right. Now imagine, as in Figure

2, accelerating the elevator upwards. Then clearly the light ray that enters on the left

will exit at a lower point of the elevator on the right because the elevator is accelerating

upwards. By the equivalence principle one should observe exactly the same thing in a

constant gravitational field (Figure 3). It follows that in a gravitational field the light

ray is bent downwards, i.e. it experiences a downward acceleration with the (locally

constant) gravitational acceleration g.

To understand the second assertion, one can e.g. simply appeal to the so-called “twin-

paradox” of Special Relativity: the accelerated twin is younger than his unaccelerated

inertial sibling. Hence accelerated clocks run slower than inertial clocks. Hence, by

the equivalence principle, clocks in a gravitational field run slower than clocks in the

absence of gravity.

Alternatively, one can imagine two observers at the top and bottom of the elevator,

having identical clocks and sending light signals to each other at regular intervals as

determined by their clocks. Once the elevator accelerates upwards, the observer at

the bottom will receive the signals at a higher rate than he emits them (because he

is accelerating towards the signals he receives), and he will interpret this as his clock
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running more slowly than that of the observer at the top. By the equivalence principle,

the same conclusion now applies to two observers at different heights in a gravitational

field. This can also be interpreted in terms of a gravitational red-shift or blue-shift

(photons losing or gaining energy by climbing or falling in a gravitational field), and we

will return to a more quantitative discussion of this effect in section 2.6.

1.2 Accelerated Observers and the Rindler Metric

What the equivalence principle tells us is that we can expect to learn something about

the effects of gravitation by transforming the laws of nature (equations of motion) from

an inertial Cartesian coordinate system to other (accelerated, curvilinear) coordinates.

As a first step, let us discuss the above example of an observer undergoing constant ac-

celeration in the context of special relativity. This will also serve to set the notation and

recall some basic facts regarding the Lorentz-covariant formulation of special relativity.

In the covariant formulation, the timelike worldline of an observer is described by the

functions ξA(τ), where ξA are standard inertial Minkowski coordinates in terms of which

the line element of Minkowski space-time [henceforth Minkowski space for short, the

union of space and time is implied by “Minkowski”] takes the form

ds2 = ηABdξ
AdξB , (1.9)

where (ηAB) = diag(−1,+1,+1,+1), and τ is the Lorentz-invariant proper time, defined

by

dτ =
√

−ηABdξAdξB . (1.10)

It follows that the velocity 4-vector uA = dξA/dτ is normalised as

uAuA ≡ ηABu
AuB = −1 . (1.11)

The Lorentz-covariant acceleration is the 4-vector

aA =
d

dτ
uA =

d2

dτ2
ξA , (1.12)

and in such an inertial coordinate system the equation of motion of a massive free

particle is
d2

dτ2
ξA(τ) = 0 . (1.13)

We will study this equation further in the next subsection. For now we look at observers

with non-zero acceleration. It follows from (1.11) by differentiation that aA is orthogonal

to uA,

aAuA ≡ ηABa
AuB = 0 , (1.14)

and therefore spacelike,

ηABa
AaB ≡ a2 > 0 . (1.15)
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Specialising to an observer accelerating in the ξ1-direction (so that in the momentary

restframe of this observer one has uA = (1, 0, 0, 0), aA = (0, a, 0, 0)), we will say that

the observer undergoes constant acceleration if a is time-independent. To determine

the worldline of such an observer, we note that the general solution to (1.11) with

u2 = u3 = 0,

ηABu
AuB = −(u0)2 + (u1)2 = −1 , (1.16)

is

u0 = coshF (τ) , u1 = sinhF (τ) (1.17)

for some function F (τ). Thus the acceleration is

aA = Ḟ (τ)(sinhF (τ), coshF )(τ), 0, 0) , (1.18)

with norm

a2 = Ḟ 2 , (1.19)

and an observer with constant acceleration is characterised by F (τ) = aτ ,

uA(τ) = (cosh aτ, sinh aτ, 0, 0) . (1.20)

This can now be integrated, and in particular

ξA(τ) = (a−1 sinh aτ, a−1 cosh aτ, 0, 0) (1.21)

is the worldline of an observer with constant acceleration a and initial condition ξA(τ =

0) = (0, a−1, 0, 0). The worldlines of this observer is the hyperbola

ηABξ
AξB = −(ξ0)2 + (ξ1)2 = a−2 (1.22)

in the quadrant ξ1 > |ξ0| of Minkoskwi space-time.

We can now ask the question what the Minkowski metric or line-element looks like in

the restframe of such an observer. Note that one cannot expect this to be again the

constant Minkowski metric ηAB : the transformation to an accelerated reference sys-

tem, while certainly allowed in special relativity, is not a Lorentz transformation, while

ηAB is, by definition, invariant under Lorentz-transformations. We are thus looking

for coordinates that are adapted to these accelerated observers in the same way that

the inertial coordinates are adapted to stationary observers (ξ0 is proper time, and the

spatial components ξi remain constant). In other words, we seek a coordinate trans-

formation (ξ0, ξ1) → (η, ρ) such that the worldlines of these accelerated observers are

characterised by ρ = constant (this is what we mean by restframe, the observer stays

at a fixed value of ρ) and ideally such that then η is proportional to the proper time of

the observer. Comparison with (1.21) suggests the coordinate transformation

ξ0(η, ρ) = ρ sinh η ξ1(η, ρ) = ρ cosh η . (1.23)
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eta constant

rho constant

worldline of a
stationary observer

Figure 7: The Rindler metric: Rindler coordinates (η, ρ) cover the first quadrant ξ1 >

|ξ0|. Indicated are lines of constant ρ (hyperbolas, worldlines of constantly accelerating

observers) and lines of constant η (straight lines through the origin). The quadrant is

bounded by the lightlike lines ξ0 = ±ξ1 ⇔ η = ±∞. A stationary observer reaches and

crosses the line η = ∞ in finite proper time τ = ξ0.
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It is now easy to see that in terms of these new coordinates the 2-dimensional Minkowski

metric ds2 = −(dξ0)2 + (dξ1)2 (we are now suppressing, here and in the remainder of

this subesection, the transverse spectator dimensions 2 and 3) takes the form

ds2 = −ρ2dη2 + dρ2 . (1.24)

This is the so-called Rindler metric. Let us gain a better understanding of the Rindler

coordinates ρ and η, which are obvisouly in some sense hyperbolic (Lorentzian) ana-

logues of polar coordinates (x = r cosφ, y = r sinφ, ds2 = dx2 + dy2 = dr2 + r2dφ2).

Since

(ξ1)2 − (ξ0)2 = ρ2 ,
ξ0

ξ1
= tanh η , (1.25)

by construction the lines of constant ρ, ρ = ρ0, are hyperbolas, (ξ1)2− (ξ0)2 = ρ2
0, while

the lines of constant η = η0 are straight lines through the origin, ξ0 = (tanh η0)ξ
1. The

null lines ξ0 = ±ξ1 correspond to η = ±∞. Thus the Rindler coordinates cover the first

quadrant ξ1 > |ξ0| of Minkowski space and can be used as coordinates there.

Along the worldline of an observer with constant ρ one has dτ = ρ0dη, so that his proper

time parametrised path is

ξ0(τ) = ρ0 sinh τ/ρ0 ξ1(τ) = ρ0 cosh τ/ρ0 , (1.26)

and his 4-velocity is given by

u0 =
d

dτ
ξ0(τ) = cosh τ/ρ0 u1 =

d

dτ
ξ1(τ) = sinh τ/ρ0 . (1.27)

These satisfy −(u0)2 + (u1)2 = −1 (as they should), and comparison with (1.20,1.21)

shows that the observer’s (constant) acceleration is a = 1/ρ0.

Even though (1.24) is just the metric of Minkwoski space-time, written in accelerated

coordinates, this metric exhibits a number of interesting features that are prototypical

of more general metrics that one encounters in general relativity:

1. First of all, we notice that the coefficients of the line element (metric) in (1.24)

are no longer constant (space-time independent). Since in the case of constant

acceleration we are just describing a “fake” gravitational field, this dependence

on the coordinates is such that it can be completely and globally eliminated by

passing to appropriate new coordinates (namely inertial Minkowski coordinates).

Since, by the equivalence principle, locally an observer cannot distinguish between

a fake and a “true” gravitational field, this now suggests that a “true” gravitational

field can be described in terms of a space-time coordinate dependent line-element

ds2 = gαβ(x)dx
αdxβ where the coordinate dependence on the xα is now such that

it cannot be eliminated globally by a suitable choice of coordinates.
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2. We observe that (1.24) appears to be ill-defined at ρ = 0. However, in this case

we already know that this is a mere coordinate singularity at ρ = 0 (akin to the

coordinate singularity at the origin of standard polar coordinates in the Cartesian

plane). More generally, whenever a metric written in some coordinate system

appears to exhibit some singular behaviour, one needs to investigate whether this

is just a coordinate singularity or a true singularity of the gravitational field itself.

3. The above coordinates do not just fail at ρ = 0, they actually fail to cover large

parts of Minkowski space. Thus the next lesson is that, given a metric in some

coordinate system, one has to investigate if the space-time described in this way

needs to be extended beyond the range of the original coordinates. One way to

analyse this question (which we will make extensive use of in section 13 when

trying to understand and come to terms with black holes) is to study light rays

or the worldlines of freely falling (inertial) observers. In the present example, it is

evident that a stationary inertial observer (at fixed value of ξ1, say, with ξ0 = τ

his proper time), will “discover” that η = +∞ is not the end of the world (he

crosses this line at finite proper time τ = ξ1) and that Minkowski space continues

(at the very least) into the quadrant ξ0 > |ξ1|.

4. Related to this is the behaviour of lightcones when expressed in terms of the

coordinates (η, ρ) or when drawn in the (η, ρ)-plane (do this!). These lightcones

satisfy ds2 = 0, i.e.

ρ2dη2 = dρ2 ⇒ dη = ±ρ−1dρ . (1.28)

describing outgoing (ρ grows with η) respectively ingoing (ρ decreases with in-

creasing η) light rays. These lightcones have the familiar Minkowskian shape at

ρ = 1, but the lightcones open up for ρ > 1 and become more and more narrow for

ρ → 0, once again exactly as we will find for the Schwarzschild black hole metric

(see Figure 14 in section 13.6).

5. Finally we note that there is a large region of Minkowski space that is “invisible”

to the constantly accelerated observers. While a static observer will eventually

receive information from any event anywhere in space-time (his past lightcone

will eventually cover all of Minkowski space . . . ), the past lightcone of one of

the Rindler accelerated observers (whose worldlines asymptote to the lightcone

direction ξ0 = ξ1) will asymptotically only cover one half of Minkowski space,

namely the region ξ0 < ξ1. Thus any event above the line ξ0 = ξ1 will forever be

invisible to this class of observers. Such an observer-dependent horizon has some

similarities with the event horizon characterising a black hole (section 13).
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1.3 General Coordinate Transformations in Minkowski Space

We now consider the effect of arbitrary (general) coordinate transformations on the laws

of special relativity and the geometry of Minkowski space(-time). Let us see what the

equation of motion (1.13) of a free massive particle looks like when written in some other

(non-inertial, accelerating) coordinate system. It is extremely useful for bookkeeping

purposes and for avoiding algebraic errors to use different kinds of indices for different

coordinate systems. Thus we will call the new coordinates xµ(ξB) and not, say, xA(ξB).

First of all, proper time should not depend on which coordinates we use to describe the

motion of the particle (the particle couldn’t care less what coordinates we experimenters

or observers use). [By the way: this is the best way to resolve the so-called ‘twin-

paradox’: It doesn’t matter which reference system you use - the accelerating twin in

the rocket will always be younger than her brother when they meet again.] Thus

dτ2 = −ηABdξAdξB

= −ηAB
∂ξA

∂xµ
∂ξB

∂xν
dxµdxν . (1.29)

Here

JAµ (x) =
∂ξA

∂xµ
(1.30)

is the Jacobi matrix associated to the coordinate transformation ξA = ξA(xµ), and we

will make the assumnption that (locally) this matrix is non-degenerate, thus has an

inverse JµA(x) or JµA(ξ) which is the Jacobi matrix associated to the inverse coordinate

transformation xµ = xµ(ξA),

JAµ J
µ
B = δAB JµAJ

A
ν = δµν . (1.31)

We see that in the new coordinates, proper time and distance are no longer measured

by the Minkowski metric, but by

dτ2 = −gµν(x)dxµdxν , (1.32)

where the metric tensor (or metric for short) gµν(x) is

gµν(x) = ηAB
∂ξA

∂xµ
∂ξB

∂xν
. (1.33)

The fact that the Minkowski metric written in the coordinates xµ in general depends

on x should not come as a surprise - after all, this also happens when one writes the

Euclidean metric in spherical coordinates etc.

It is easy to check, using (1.31), that the inverse metric, which we will denote by gµν ,

gµν(x)gνλ(x) = δµλ , (1.34)
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is given by

gµν(x) = ηAB
∂xµ

∂ξA
∂xν

∂ξB
. (1.35)

We will have much more to say about the metric below and, indeed, throughout this

course.

Turning now to the equation of motion, the usual rules for a change of variables give

d

dτ
ξA =

∂ξA

∂xµ
dxµ

dτ
, (1.36)

where ∂ξA

∂xµ is an invertible matrix at every point. Differentiating once more, one finds

d2

dτ2
ξA =

∂ξA

∂xµ
d2xµ

dτ2
+

∂2ξA

∂xν∂xλ
dxν

dτ

dxλ

dτ

=
∂ξA

∂xµ

[
d2xµ

dτ2
+
∂xµ

∂ξB
∂2ξB

∂xν∂xλ
dxν

dτ

dxλ

dτ

]
. (1.37)

Thus, since the matrix appearing outside the square bracket is invertible, in terms of the

coordinates xµ the equation of motion, or the equation for a straight line in Minkowski

space, becomes
d2xµ

dτ2
+
∂xµ

∂ξA
∂2ξA

∂xν∂xλ
dxν

dτ

dxλ

dτ
= 0 . (1.38)

The second term in this equation, which we will write as

d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 , (1.39)

where

Γµνλ =
∂xµ

∂ξA
∂2ξA

∂xν∂xλ
, (1.40)

represents a pseudo-force or fictitious gravitational force (like a centrifugal force or the

Coriolis force) that arises whenever one describes inertial motion in non-inertial coor-

dinates. This term is absent for linear coordinate transformations ξA(xµ) = MA
µ x

µ. In

particular, this means that the equation (1.13) is invariant under Lorentz transforma-

tions, as it should be.

While (1.39) looks a bit complicated, it has one fundamental and attractive feature

which will also make it the prototype of the kind of equations that we will be looking

for in general. This feature is its covariance under general coordinate transformations,

which means that the equation takes the same form in any coordinate system. Indeed,

this covariance is in some sense tautologically true since the coordinate system {xµ}
that we have chosen is indeed arbitrary. However, it is instructive to see how this comes

about by explicitly transforming (1.39) from one coordinate system to another.

Thus consider transforming (1.13) to another coordinate system {yµ′}. Following the

same steps as above, one thus arrives at the y-version of (1.37), namely

d2

dτ2
ξA =

∂ξA

∂yµ′

[
d2yµ

′

dτ2
+
∂yµ

′

∂ξB
∂2ξB

∂yν′∂yλ′
dyν

′

dτ

dyλ
′

dτ

]
. (1.41)
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Equating this result to (1.37) and using

∂yµ
′

∂xµ
=
∂yµ

′

∂ξA
∂ξA

∂xµ
, (1.42)

one finds
d2yµ

′

dτ2
+ Γµ

′

ν′λ′
dyν

′

dτ

dyλ
′

dτ
=
∂yµ

′

∂xµ

[
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ

]
(1.43)

Thus the geodesic equation transforms in the simplest possible non-trival way under

coordinate transformations x → y, namely with the Jacobian matrix ∂(y)/∂(x). We

will see later that this transformation behaviour characterises/defines tensors, in this

particular case a vector (or contravriant tensor of rank 1).

In particular, since this matrix is assumed to be invertible, we reach the conclusion that

the left hand side of (1.43) is zero if the term in square brackets on the right hand side

is zero,
d2yµ

′

dτ2
+ Γµ

′

ν′λ′
dyν

′

dτ

dyλ
′

dτ
= 0 ⇔ d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 (1.44)

This is what is meant by the statement that the equation takes the same form in any

coordinate system. We see that in this case this is achieved by having the equation

transform in a particularly simple way under coordinate transformations, namely as a

tensor.

Remarks:

1. We will see below that, in general, that is for an arbitrary metric, not necessarily

related to the Minkowski metric by a coordinate transformation, the equation for

a geodesic, i.e. a path that extremises proper time or proper distance, takes the

form (1.39), where the (pseudo-)force terms can be expressed in terms of the first

derivatives of the metric as

Γµνλ = gµρΓρνλ

Γρνλ = 1
2(gρν ,λ +gρλ,ν −gνλ,ρ ) . (1.45)

[You should check yourself that plugging the metric (1.33) into this equation, you

find the result (1.40).]

2. In this sense, the metric plays the role of a potential for the pseudo-force and,

more generally, for the gravitational force, and will thus come to play the role

of the fundamental dynamical variable of gravity. Also, in this more general

context the Γµνλ are referred to as the Christoffel symbols of the metric or (in more

fancy terminology) the components of the Levi-Civita connection, a privileged

connection on the tangent (or frame) bundle of a manifold equipped with a metric.
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1.4 Metrics and Coordinate Transformations

Above we saw that the motion of free particles in Minkowski space in curvilinear coordi-

nates is described in terms of a modified metric, gµν , and a force term Γµνλ representing

the ‘pseudo-force’ on the particle. Thus the Einstein Equivalence Principle suggests

that an appropriate description of true gravitational fields is in terms of a metric tensor

gµν(x) (and its associated Christoffel symbols) which can only locally be related to the

Minkowski metric via a suitable coordinate transformation (to locally inertial coordi-

nates). Thus our starting point will now be a space-time equipped with some metric

gµν(x), which we will assume to be symmetric and non-degenerate, i.e.

gµν(x) = gνµ(x) det(gµν(x)) 6= 0 . (1.46)

A space-time equipped with a metric tensor gµν(x) is called a metric space-time or

(pseudo-)Riemannian space-time. Here “Riemannian” usually refers to a space equipped

with a positive-definite metric (all eigenvalues positive), while pseudo-Riemannian (or

Lorentzian) refers to a space-time with a metric with one negative and 3 (or 27, or

whatever) positive eigenvalues. The metric encodes the information how to measure

(spatial and temporal) distances, as well as areas, volumes etc., via the associated line

element

ds2 = gµν(x)dx
µdxν . (1.47)

Remarks:

1. Examples that you may be familar with are the metrics on the 2-sphere or 3-sphere

of radius R in spherical coordinates,

ds2(S2) = R2(dθ2 + sin2 θdφ2)

ds2(S3) = R2(dα2 + sin2 α(dθ2 + sin2 θdφ2)) . (1.48)

These metrics can of course be elevated to space-time metrics by adding e.g.

a (−dt2), and for example a space-time metric describing a spatially spherical

universe with a time-dependent radius (expansion of the universe!) might be

described by the line element

ds2 = −dt2 + a(t)2
(
dα2 + sin2 α(dθ2 + sin2 θdφ2)

)
. (1.49)

2. A metric determines a geometry, but different metrics may well determine the

same geometry, namely those metrics which are just related by coordinate trans-

formations. In particular, distances should not depend on which coordinate system

is used. Hence, changing coordinates from the {xµ} to new coordinates {yµ′(xµ)}
and demanding that

gµν(x)dx
µdxν = gµ′ν′(y)dy

µ′dyν
′

, (1.50)
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one finds that under a coordinate transformation the metric transforms as

gµ′ν′ = gµν
∂xµ

∂yµ
′

∂xν

∂yν
′
≡ Jµµ′J

ν
ν′ gµν . (1.51)

3. Objects which transform in such a nice and simple way under coordinate transfor-

mations are known as tensors - the metric is an example of what is known as (and

we will get to know as) a covariant symmetric rank two tensor. We will study

tensors in much more detail and generality later, starting in section 3.

4. One point to note about this transformation behaviour is that if in one coordinate

system the metric tensor has one negative and three positive eigenvalues (as in a

locally inertial coordinate system), then the same will be true in any other coordi-

nate system (even though the eigenvalues themselves will in general be different) -

this statement should be familiar from linear algebra as Sylvester’s law of inertia.

5. In a pseudo-Riemannian space-time one has the same distinction between space-

like, timelike and lightlike separations as in Minkowski space(-time). Spacelike

distances correspond to ds2 > 0, timelike distances to dτ2 = −ds2 > 0, and null

or lightlike distances to ds2 = dτ2 = 0. In particular, a vector V µ(x) at a point

x is called spacelike if gµν(x)V
µ(x)V ν(x) > 0 etc., and a curve xµ(λ) is called

spacelike if its tangent vector is everywhere spacelike etc. Using the definition of

a vector in general relativity (to be introduced in section 3), namely an object

that transforms in the obvious way, with the Jacobi matrix, under coordinate

transformations, one sees that gµν(x)V
µ(x)V ν(x) is a scalar, i.e. invariant under

coordinate transformation, and hence the statement that a vector is, say, spacelike

is a coordinate-independent statement, as it should be.

6. By drawing the coordinate grid determined by the metric tensor, one can convince

onseself that in general a metric space or space-time need not or cannot be flat.

Example: the coordinate grid of the metric dθ2+sin2 θdφ2 cannot be drawn in flat

space but can be drawn on the surface of a two-sphere because the infinitesimal

parallelograms described by ds2 degenerate to triangles not just at θ = 0 (as would

also be the case for the flat metric ds2 = dr2+r2dφ2 in polar coordinates at r = 0),

but also at θ = π.

At this point the question naturally arises how one can tell whether a given (per-

haps complicated looking) metric is just the flat metric written in other coordinates or

whether it describes a genuinely curved space-time. We will see later that there is an

object, the Riemann curvature tensor, constructed from the second derivatives of the

metric, which has the property that all of its components vanish if and only if the metric

is a coordinate transform of the flat space Minkowski metric. Thus, given a metric, by

calculating its curvature tensor one can decide if the metric is just the flat metric in

disguise or not. The curvature tensor will be introduced in section 7, and the above

statement will be established in section 8.2.
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1.5 The Geodesic Equation and Christoffel Symbols

We have seen that the equation for a straight line in Minkowski space, written in arbi-

trary coordinates, is
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 , (1.52)

where the pseudo-force term Γµνλ is given by (1.40). We have also seen in (1.45) (pro-

vided you checked this) that Γµνλ can be expressed in terms of the metric (1.33) as

Γµνλ = 1
2g
µρ(gρν ,λ +gρλ,ν −gνλ,ρ ) . (1.53)

This gravitational force term is fictitious since it can globally be transformed away by

going to the global inertial coordinates ξA. The equivalence principle suggests, however,

that in general the equation for the worldline of a massive particle, i.e. a path that

extremises proper time, in a true gravitational field is also of the above form.

We will now confirm this by deriving the equations for a path that extremises proper time

from a variational principle. Recall from special relativity, that the Lorentz-invariant

action of a free massive particle with mass m is is

S0 = −m
∫
dτ , (1.54)

with dτ2 = −ηABdξAdξB . We can adopt the same action in the present setting, with

the coordinate-invariant Lagrangian

dτ2 = −gµν(x)dxµdxν . (1.55)

Of course m drops out of the variational equations (as it should by the equivalence

principle) and we will therefore ignore m in the following. We can also consider spacelike

paths that extremise (minimise) proper distance, by using the action

S0 ∼
∫
ds (1.56)

where

ds2 = gµνdx
µdxν . (1.57)

One should also consider massless particles, whose worldlines will be null (or lightlike)

paths. However, in that case one can evidently not use proper time or proper distance,

since these are by definition zero along a null path, dτ2 = 0. We will come back to this

special case, and a unified description of the massive and massless case, below (section

2.1). In all cases, we will refer to the resulting paths as geodesics.

In order to perform the variation, it is useful to introduce an arbitrary auxiliary param-

eter λ in the initial stages of the calculation via

dτ = (−gµν dx
µ

dλ
dxν

dλ )1/2dλ , (1.58)
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and to write ∫
dτ =

∫
(dτ/dλ)dλ =

∫
(−gµν dx

µ

dλ
dxν

dλ )1/2dλ . (1.59)

We are varying the paths

xµ(τ) → xµ(τ) + δxµ(τ) (1.60)

keeping the end-points fixed, and will denote the τ -derivatives by ẋµ(τ). By the standard

variational procedure one then finds

δ

∫
dτ = 1

2

∫
(−gµν dx

µ

dλ
dxν

dλ )−1/2dλ

[
−δgµν

dxµ

dλ

dxν

dλ
− 2gµν

dδxµ

dλ

dxν

dλ

]

=
1

2

∫
dτ
[
−gµν ,λ ẋµẋνδxλ + 2gµν ẍ

νδxµ + 2gµν ,λ ẋ
λẋνδxµ

]

=

∫
dτ
[
gµν ẍ

ν + 1
2 (gµν ,λ +gµλ,ν −gνλ,µ )ẋν ẋλ

]
δxµ (1.61)

Here the factor of 2 in the first equality is a consequence of the symmetry of the metric,

the second equality follows from an integration by parts, the third from relabelling the

indices in one term and using the symmetry in the indices of ẋλẋν in the other.

If we now adopt the definition (1.53) for an arbitrary metric,

Γµνλ = 1
2g
µρ(gρν ,λ +gρλ,ν −gνλ,ρ ) , (1.62)

we can write the result as

δ

∫
dτ =

∫
dτgµν(ẍ

ν + Γνρλẋ
ρẋλ)δxµ . (1.63)

Thus we see that indeed the equations of motion for a massive particle in an arbitrary

gravitational field are
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 . (1.64)

We will have much more to say about geodesics and variational principles in section 2.

1.6 Christoffel Symbols and Coordinate Transformations

The Christoffel symbols play the role of the gravitational force term, and thus in this

sense the components of the metric play the role of the gravitational potential. These

Christoffel symbols play an important role not just in the geodesic equation but, as we

will see later on, more generally in the definition of a covariant derivative operator and

the construction of the curvature tensor.

Two elementary important properties of the Christoffel symbols are that they are sym-

metric in the second and third indices,

Γµνλ = Γµλν , Γµνλ = Γµλν , (1.65)
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and that symmetrising Γµνλ over the first pair of indices one finds

Γµνλ + Γνµλ = gµν,λ . (1.66)

Knowing how the metric transforms under coordinate transformations, we can now also

determine how the Christoffel symbols (1.53) and the geodesic equation transform. A

straightforward but not particularly inspiring calculation (which you should nevertheless

do) gives

Γµ
′

ν′λ′ = Γµνλ
∂yµ

′

∂xµ
∂xν

∂yν′
∂xλ

∂yλ′
+
∂yµ

′

∂xµ
∂2xµ

∂yν′∂yλ′
. (1.67)

Thus, Γµνλ transforms inhomogenously under coordinate transformations. If only the

first term on the right hand side were present, then Γµνλ would be a tensor. However, the

second term is there precisely to compensate for the fact that ẍµ is also not a tensor - the

combined geodesic equation transforms in a nice way under coordinate transformations.

Namely, after another not terribly inspiring calculation (which you should nevertheless

also do at least once in your life) , one finds

d2yµ
′

dτ2
+ Γµ

′

ν′λ′
dyν

′

dτ

dyλ
′

dτ
=
∂yµ

′

∂xµ

[
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ

]
. (1.68)

This is analogous to the result (1.43) that we had obtained before in Minkoswki space,

and the same remarks about covariance and tensors etc. apply.

Remarks:

1. That the geodesic equation transforms in this simple way (namely as a vector)

should not come as a surprise. We obtained this equation as a variational equation.

The Lagrangian itself is a scalar (invariant under coordinate transformations), and

the variation δxµ is (i.e. transforms like) a vector. Putting these pieces together,

one finds the desired result. [This comment may become less mysterious after the

discussion of tensors and Lie derivatives . . . ]

2. There is of course a very good physical reason for why the force term in the geodesic

equation (which, incidentally, is quadratic in the velocities, quite peculiar) is not

tensorial. This simply reflects the equivalence principle that locally, at a point (or

in a sufficiently small neighbourhood of a point) you can eliminate the gravitational

force by going to a freely falling (inertial) coordinate system. This would not be

possible if the gravitational force term in the equation of motion for a particle

were tensorial.
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2 The Physics and Geometry of Geodesics

2.1 An Alternative Variational Principle for Geodesics

As we have already noted, there is a problem with the above action principle for massless

particles (null geodesics). For this reason and many other practical purposes (the square

root in the action is awkward) it is much more convenient to use, instead of the action

S0[x] = −m
∫
dτ = −m

∫
dλ

√
−gαβ

dxα

dλ

dxβ

dλ
≡
∫
dλ Lλ0 (2.1)

the simpler Lagrangian

L = 1
2gµν

dxµ

dλ

dxν

dλ
(2.2)

and action

S1[x] =

∫
dλ L . (2.3)

Before discussing and establishing the relation between these two actions, let us first

verify that S1 really leads to the same equations of motion as S0. Either by direct

variation of the action, or by using the Euler-Lagrange equations

d

dτ

∂L
∂ẋµ

− ∂L
∂xµ

= 0 , (2.4)

one finds that the action is indeed extremised by the solutions to the equation

d2xµ

dλ2
+ Γµνλ

dxν

dλ

dxλ

dλ
= 0 . (2.5)

This is identical to the geodesic equation derived from S0 (with λ → τ , the proper

time).

Now let us turn to the relationship between, and comparison of, the two actions S0

and S1. The first thing to notice is that S0 is manifestly parametrisation-invariant,

i.e. independent of how one parametrises the path. The reason for this is that dτ =

(dτ/dλ)dλ is evidently independent of λ. This is not the case for S1, which changes

under parametrisations or, put more positively, singles out a preferred parametrisation

(or, more precicesly, class of parametrisations). We will discuss this in somewhat more

detail in section 2.2.

Thus, what is the relation (if any) between the two actions? In order to explain this, it

will be useful to introduce an additional field e(λ) (i.e. in addition to the xα(λ)), and a

“master action” (or parent action) S which we can relate to both S0 and S1. Consider

the action

S[x, e] = 1
2

∫
dλ

(
e(λ)−1gαβ

dxα

dλ

dxβ

dλ
−m2e(λ)

)
=

∫
dλ
(
e(λ)−1L − 1

2m
2e(λ)

)
(2.6)
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The crucial property of this action is that it is parametrisation invariant provided that

one declares e(λ) to transform appropriately. It is easy to see that under a transforma-

tion λ→ λ̄ = f(λ), with

x̄α(λ̄) = xα(λ) dλ̄ = f ′(λ)dλ (2.7)

the action S is invariant provided that e(λ) transforms such that e(λ)dλ is invariant,

i.e.

ē(λ̄)dλ̄
!
= e(λ)dλ ⇒ ē(λ̄) = e(λ)/f ′(λ) . (2.8)

The first thing to note now is that, courtesy of this parametrisation invariance, we

can always choose a “gauge” in which e(λ) = 1. With this choice, the action S[x, e]

manifestly reduces to the action S1[x] modulo an irrelevant field-independent constant,

S[x, e = 1] =

∫
dλ L − 1

2m
2

∫
dλ = S1[x] + const. . (2.9)

Thus we can regard S1 as a gauge-fixed version of S (no wonder it is not parametrisation

invariant . . . ). We will come back to the small residual gauge invariance (reparametri-

sations that preserve the gauge condition e(λ) = 1) below.

Alternatively, instead of fixing the gauge, we can try to eliminate e(λ) (which appears

purely algebraically, i.e. without derivatives, in the action) by its equation or motion.

Varying S[x, e] with respect to e(λ), one finds the constraint

gαβ
dxα

dλ

dxβ

dλ
+m2e(λ)2 = 0 . (2.10)

This is just the usual mass-shell condition in disguise. It suggests that a better gauge

fixing than e(λ) = 1 would have been e(λ) = m−1. However, the sole effect of this would

have been to replace L in (2.9) by mL,

e(λ) = 1 → e(λ) = m−1 ⇒ L → mL . (2.11)

In any caser, for a massive particle, m2 6= 0, one can also solve (2.10) for e(λ),

e(λ) = m−1

√
−gαβ

dxα

dλ

dxβ

dλ
. (2.12)

Using this to eliminate e(λ) from the action, one finds

S[x, e = m−1√. . .] = −m
∫
dλ

√
−gαβ

dxα

dλ

dxβ

dλ
= −m

∫
dτ = S0[x] . (2.13)

Thus for m2 6= 0 we find exactly the original action (integral of the proper time) S0[x]

(and since we haven’t touched or fixed the parametrisation invariance, no wonder that

S0 is parametrisation invariant). Thus we have elucidated the common origin of S0 and

S1 for a massive particle.

Remarks:
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1. An added benefit of the master action S[x, e] is that it also makes perfect sense

for a massless particle. For m2 = 0, the mass shell condition

gαβ
dxα

dλ

dxβ

dλ
= 0 (2.14)

says that these particles move along null lines, and the action reduces to

S[x, e] = 1
2

∫
dλ e(λ)−1gαβ

dxα

dλ

dxβ

dλ
(2.15)

which is parametrisation invariant but can (as in the massive case) be fixed to

e(λ) = 1, upon which the action reduces to S1[x]. Thus we see that S1[x] indeed

provides a simple and unfied action for both massive and massless particles, and in

both cases the resulting equation of motion is the (affinely parametrised) geodesic

equation (2.5),
d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 . (2.16)

2. One important consequence of (2.16) is that the quantity L is a constant of motion,

i.e. constant along the geodesic,

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 ⇒ d

dλ

(
gαβ

dxα

dλ

dxβ

dλ

)
= 0 . (2.17)

This useful result can be understood and derived in a variety of ways, the least

insightful of which is direct calculation. Nevertheless, this is straightforward and

a good exercise in Γ-ology. An alternative derivation will be given in section 4,

using the concept of ‘covariant derivative along a curve’.

From the present (action-based) perspective it is most useful to think of this as

the conserved quantity associated (via Noether’s theorem) to the invariance of the

action S1[x] under translations in λ. Note that evidently S1[x] has this invariance

(as there is no explicit dependence on λ) and that this invariance is precisely the

residual parametrisation invariance f(λ) = λ+ a, f ′(λ) = 1, that leaves invariant

the “gauge” condition e(λ) = 1. For an infinitesimal constant λ-translation one

has δxα(λ) = dxα/dλ etc., so that

∂

∂λ
L = 0 ⇒ δL =

d

dλ
L =

d

dλ

(
∂L

∂(dxα/dλ)

dxα

dλ

)
+ Euler − Lagrange .

(2.18)

Thus via Noether’s theorem the associated conserved charge for a solution to the

Euler-Lagrange equations is the Legendre transform

H =

(
∂L

∂(dxα/dλ)

dxα

dλ

)
− L (2.19)

of the Lagrangian (aka the Hamiltonian, once expressed in terms of the momenta).

In the case at hand, with the Lagrangian L consisting of a purely quadratic term

38



in the velocities (the dxα/dλ), the Hamiltonian is equal to the Lagrangian, and

hence the Lagrangian L itself is conserved,

H = L ,
d

dλ
L|solution = 0 . (2.20)

3. This is as it should be: something that starts off as a massless particle will remain

a massless particle etc. If one imposes the initial condition

gµν
dxµ

dλ

dxν

dλ

∣∣∣∣
λ=0

= ǫ , (2.21)

then this condition will be satisfied for all λ. In particular, therefore, one can

choose ǫ = ∓1 for timelike (spacelike) geodesics, and λ can then be identified with

proper time (proper distance), while the choice ǫ = 0 sets the initial conditions

appropriate to massless particles (for which λ is then not related to proper time

or proper distance).

2.2 Affine and Non-affine Parametrisations

To understand the significance of how one parametrises the geodesic, observe that the

geodesic equation itself,

ẍµ + Γµνλẋ
ν ẋλ = 0 , (2.22)

is not parametrisation invariant. Indeed, consider a change of parametrisation τ → σ =

f(τ). Then
dxµ

dτ
=
df

dτ

dxµ

dσ
, (2.23)

and therefore the geodesic equation written in terms of σ reads

d2xµ

dσ2
+ Γµνλ

dxν

dσ

dxλ

dσ
= − f̈

ḟ2

dxµ

dσ
. (2.24)

Thus the geodesic equation retains its form only under affine changes of the proper time

parameter τ , f(τ) = aτ + b, and parameters σ = f(τ) related to τ by such an affine

transformation are known as affine parameters.

From the first variational principle, based on S0, the term on the right hand side arises

in the calculation of (1.61) from the integration by parts if one does not switch back

from λ to the affine parameter τ . The second variational principle, based on S1 and the

Lagrangian L, on the other hand, always and automatically yields the geodesic equation

in affine form.

Conversely, if we find a curve that satisfies

d2xµ

dσ2
+ Γµνλ

dxν

dσ

dxλ

dσ
= κ(σ)

dxµ

dσ
, (2.25)
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for some function κ(σ), we can deduce that this curve is the trajectory of a geodesic,

but that it is simply not parametrised by an affine parameter (like proper time in the

case of a timelike curve). Comparison of (2.24) and (2.25) shows that, given κ(σ), an

affine parameter τ is determined by

κ(f(τ)) = − f̈

ḟ2
⇔ κ(σ) =

d

dσ
ln
dτ

dσ
(2.26)

or
dτ

dσ
= e

∫ σ
ds κ(s) . (2.27)

In the following, whenever we talk about geodesics we will practically always have in

mind the variational principle based on S1 leading to the geodesic equation (2.16) in

affinely parametrised form.

However, it should be kept in mind that sometimes non-affine parameters appear nat-

urally. For instance, it is occasionally convenient to parametrise timelike geodesics in a

geometry with coordinates xα = (x0 = t, xk) not by xα = xα(τ), where τ is the proper

time along the geodesic, but rather as xk = xk(t). This is the same curve, but described

with respect to coordinate time (which could for instance agree with the proper time

of some other, perhaps stationary, observer). The curve t → (t, xk(t)) will not be an

affinely parametrised curve unless t satisfies the geodesic equation ẗ = 0 ↔ t = aτ + b.

One occasion where this will play a role (and from where I have borrowed the symbol

κ for the “inaffinity”) is in our discussion, much later, of the horizon of a black hole,

where the lack of a certain coordinate to be an affine parameter is directly related to

the physical properties of black holes (see section 13.8). In this context κ is known as

the surface gravity of a black hole.

2.3 A Simple Example

It is high time to consider an example. We will consider the simplest non-trivial metric,

namely the standard Euclidean metric on R
2 in polar coordinates. Thus the line element

is

ds2 = dr2 + r2dφ2 (2.28)

and the non-zero components of the metric are grr = 1, gφφ = r2. Since this metric is

diagonal, the components of the inverse metric gµν are grr = 1 and gφφ = r−2.

A remark on notation: since µ, ν in gµν are coordinate indices, we should really have

called x1 = r, x2 = φ, and written g11 = 1, g22 = r2, etc. However, writing grr etc. is

more informative and useful since one then knows that this is the (rr)-component of the

metric without having to remember if one called r = x1 or r = x2. In the following we

will frequently use this kind of notation when dealing with a specific coordinate system,

while we retain the index notation gµν etc. for general purposes.
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The Christoffel symbols of this metric are to be calculated from

Γµνλ = 1
2(gµν,λ + gµλ,ν − gνλ,µ) . (2.29)

Since the only non-trivial derivative of the metric is gφφ,r = 2r, only Christoffel symbols

with exactly two φ’s and one r are non-zero,

Γrφφ = 1
2(grφ,φ + grφ,φ − gφφ,r) = −r

Γφφr = Γφrφ = r . (2.30)

Thus, since the metric is diagonal, the non-zero Γµνλ are

Γrφφ = grµΓµφφ = grrΓrφφ = −r

Γφrφ = Γφφr = gφµΓµrφ = gφφΓφrφ =
1

r
. (2.31)

Note that here it was even convenient to use a hybrid notation, as in grµ, where r is

a coordinate and µ is a coordinate index. Once again, it is very convenient to permit

oneself to use such a mixed notation.

In any case, having assembled all the Christoffel symbols, we can now write down the

geodesic equations (one again in the convenient hybrid notation). For r one has

r̈ + Γrµν ẋ
µẋν = 0 , (2.32)

which, since the only non-zero Γrµν is Γrφφ, reduces to

r̈ − rφ̇2 = 0 . (2.33)

Likewise for φ one finds

φ̈+
2

r
φ̇ṙ = 0 . (2.34)

Here the factor of 2 arises because both Γφrφ and Γφφr = Γφrφ contribute.

Now this equation is supposed to describe geodesics in R
2, i.e. straight lines. This can be

verified in general (but, in general, polar coordinates are of course not particularly well

suited to describe straight lines). However, it is easy to find a special class of solutions

to the above equations, namely curves with φ̇ = r̈ = 0. These correspond to paths of

the form (r(s), φ(s)) = (s, φ0), which are a special case of straight lines, namely straight

lines through the origin.

The geodesic equations can of course also be derived as the Euler-Lagrange equations

of the Lagrangian

L = 1
2(ṙ2 + r2φ̇2) . (2.35)

Indeed, one has

d

dτ

∂L
∂ṙ

− ∂L
∂r

= r̈ − rφ̇2 = 0

d

dτ

∂L
∂φ̇

− ∂L
∂φ

= r2φ̈+ 2rṙφ̇ = 0 , (2.36)
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which are obviously identical to the equations derived above.

You may have the impression that getting the geodesic equation in this way, rather than

via calculation of the Christoffel symbols first, is much simpler. I agree wholeheartedly.

Not only is the Lagrangian approach the method of choice to determine the geodesic

equations. It is also frequently the most efficient method to determine the Christoffel

symbols. This will be described in the next section.

Another advantage of the Lagrangian formulation is, as in classical mechanics, that it

makes it much easier to detect and exploit symmetries. Indeed, you may have already

noticed that the above second-order equation for φ is overkill. Since the Lagrangian

does not depend on φ (i.e. it is invariant under rotations), one has

d

dτ

∂L
∂φ̇

= 0 , (2.37)

which means that ∂L/∂φ̇ is a constant of motion, the angular momentum L,

∂L
∂φ̇

= r2φ̇ = L . (2.38)

This equation is a first integral of the second-order equation for φ. We will come back

to this in somewhat more generality below.

The next simplest example to discuss would be the two-sphere with its standard metric

dθ2 + sin2 θdφ2. It will appear, in bits and pieces, in the next section to illustrate the

general remarks.

2.4 Consequences and Uses of the Euler-Lagrange Equations

Recall from above that the geodesic equation for a metric gµν can be derived from the

Lagrangian L = (1/2)gµν ẋ
µẋν

d

dτ

∂L
∂ẋµ

− ∂L
∂xµ

= 0 . (2.39)

This has several immediate consequences which are useful for the determination of

Christoffel symbols and geodesics in practice.

1. Conserved charges / first integrals of the geodesic equation

Just as in classical mechanics, a coordinate the Lagrangian does not depend on

explicitly (a cyclic coordinate) leads to a conserved quantity, assocaited with the

translation invariance of the system in that direction. In the present context this

means that if, say, ∂L/∂x1 = 0 (this means that the coeffcients of the metric do

not depend on x1), then the corresponding momentum

p1 = ∂L/∂ẋ1 = g1ν ẋ
ν (2.40)
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is conserved along the geodesic.

Remarks:

(a) One might perhaps have wanted to argue that the definition (and interpre-

tation) of conserved momenta should be based on the physical Lagrangian

(2.1)

Lλ0 = −m
√
−gαβ

dxα

dλ

dxβ

dλ
(2.41)

with action S = −m
∫
dτ , but this makes no difference since the two momenta

are essentially equal: one has

∂Lλ0
∂(dx1/dλ)

= mp1 (2.42)

with p1 as defined in (2.40), so that this just supplies us with the additional

information that the momenta obtained from the Lagrangian L should (for a

massive particle) be interpreted as momenta per unit mass. This discrepancy

could have been avoided by working with the Lagrangian mL (alternatively:

fixing the gauge e(λ) = m−1 in section 2.1, see (2.11)), but unless or until

one starts coupling the particle to fields other than the gravitational field it

is unnecessary (and a nuisance) to carry m around all the time.

(b) For example, on the two-sphere the Lagrangian reads

L = 1
2(θ̇2 + sin2 θφ̇2) . (2.43)

The angle φ is a cyclic variable and the angular momentum (actually angular

momentum per unit mass for a massive particle)

pφ =
∂L
∂φ̇

= sin2 θφ̇ (2.44)

is a conserved quantity. This generalises to conservation of angular momen-

tum for a particle moving in an arbitrary spherically symmetric gravitational

field.

(c) Likewise, if the metric is independent of the time coordinate x0 = t, the

corresponding conserved quantity

p0 = g0ν ẋ
ν ≡ −E (2.45)

has the interpretation as minus the energy (per unit mass) of the particle,

“minus” because, with our sign conventions, p0 = −E in special relativity.

We will discuss the relation between this notion of energy and the notion

of energy familiar from special relativity (this requires an asymptotically

Minkowski-like metric) in more detail in section 12.1.
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(d) We will discuss in more detail in section 2.5 (and then again in section 6)

how to detect and describe symmetries and conserved charges in coordinate

systems in which the symmetries are not as manifest (via cyclic variables) as

above.

2. Reading off (some) geodesics directly from the metric

Another immediate consequence is the following: consider a space or space-time

with coordinates {y, xµ} and a metric of the form ds2 = dy2 + gµν(x, y)dx
µdxν .

Then the coordinate lines of y are geodesics. Indeed, since the Lagrangian is

L = 1
2 (ẏ2 + gµν ẋ

µẋν) , (2.46)

the Euler-Lagrange equations are of the form

ÿ − 1
2gµν ,y ẋ

µẋν = 0

ẍµ + terms proportional to ẋ = 0 . (2.47)

Therefore ẋµ = 0, ÿ = 0 is a solution of the geodesic equation, and it describes

motion along the coordinate lines of y.

Remarks:

(a) In the case of the two-sphere, with its metric ds2 = dθ2 + sin2 θdφ2, this

translates into the familiar statement that the great circles, the coordinate

lines of y = θ, are geodesics.

(b) The result is also valid when y is a timelike coordinate. For example, consider

a spacetime with coordinates (t, xi) and metric

ds2 = −dt2 + a(t)2gij(x)dx
idxj (2.48)

(this describes a space-time with spatial metric gij(x)dx
idxj and a time-

dependent radius a(t); in particular, such a space-time metric can describe

an expanding universe in cosmology - see section 15). In such a spacetime,

there is, according to the above result, a privileged class of freely falling

(i.e. geodesic) observers, namely those that stay at fixed values of the spatial

coordinates xi. For such observers, the coordinate-time t coincides with their

proper time τ .

3. Using the Euler-Lagrange equations to determine the Christoffel symbols

Finally, the Euler-Lagrange form of the geodesic equations frequently provides

the most direct way of calculating Christoffel symbols - by comparing the Euler-

Lagrange equations with the expected form of the geodesic equation in terms of

Christoffel symbols. Thus you derive the Euler-Lagrange equations, write them

in the form

ẍµ + terms proportional to ẋẋ = 0 , (2.49)
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and compare with the geodesic equation

ẍµ + Γµνλẋ
ν ẋλ = 0 (2.50)

to read off the Γµνλ.

Remarks:

(a) Careful - in this and similar calculations beware of factors of 2:

Γµνλẋ
ν ẋλ = Γµ11(ẋ

1)2 + 2Γµ12ẋ
1ẋ2 + . . . (2.51)

(b) For example, once again in the case of the two-sphere, for the θ-equation one

has

d

dτ

∂L
∂θ̇

= 2θ̈

∂L
∂θ

= 2 sin θ cos θφ̇2 . (2.52)

Comparing the variational equation

θ̈ − sin θ cos θφ̇2 = 0 (2.53)

with the geodesic equation

θ̈ + Γθθθθ̇
2 + 2Γθθφθ̇φ̇+ Γθφφφ̇

2 = 0 , (2.54)

one can immediately read off that

Γθφφ = − sin θ cos θ

Γθθθ = Γθθφ = 0 . (2.55)

2.5 Conserved Charges and (a first encounter with) Killing Vectors

In the previous section we have seen that cyclic coordinates, i.e. coordinates the metric

does not depend on, lead to conserved charges, as in (2.40). As nice and useful as this

may be (and it is nice and useful), it is obvioulsy somewhat unsatisfactory because it

is an explicitly coordinate-dependent statement: the metric may well be independent

of one coordinate in some coordinate system, but if one now performs a coordinate

transformation which depends on that coordinate, then in the new coordinate system

the metric will typically depend on all the new coordinates. Nevertheless,

• the statement that a metric has a certain symmetry (a translational symmetry in

the first coordinate system) should be coordinate-independent, and

• thus there should be a corresponding first integral of the geodesic equation in any

coordinate system.
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To see how this works, let us reconsider the situation discussed in the previous section,

namely a metric which in some coordinate system, we will now call it {yµ}, has com-

ponents gµν which are independent of y1, say. Translation invariance of the geodesic

Lagrangian is the statement that the Lagrangian is invariant under the infinitesimal

variation δy1 = ǫ, δyµ = 0 otherwise, and via Noether’s theorem this leads to a con-

served charge g1µẏ
µ, as in (2.40).

Now we ask ourselves what this statement corresponds to in another coordinate system.

Note that in the y-coordinates, invariance is the statement that the metric is invariant

under the (infinitesimal) coordinate transformation y1 → y1 + ǫ or δy1 = ǫ, δyµ = 0

otherwise,

δgµν ≡ ∂y1gµν = 0 . (2.56)

It is then clear that in another coordinate system, infinitesimal y1-translations must also

correspond to some infinitesimal coordinate transformation (but not necessarily just a

translation),

δxα = ǫV α(x) . (2.57)

In particular, if (as in the above example) in y-coordinates V µ has the components

V 1 = 1, V µ = 0 otherwise, then in any other coordinate system one has

δxα = (∂xα/∂yµ)δyµ = ǫ(∂xα/∂y1) (2.58)

so that

V α = Jα1 (2.59)

is just the corresponding column of the Jacobi matrix.

In order to determine how to characterise the translational symmetry (2.56) of the

metric in an arbitrary coordinate system, we will now proceed in two (as it turns out

ultimately equivalent) ways.

1. We can investigate directly, under which conditions on the V α the transformation

(2.57) leads to an invariance of the Lagrangian (2.2). Using

δẋα = ẋγ∂γV
α (2.60)

one straightforwardly finds

δ
(
gαβẋ

αẋβ
)

= ǫδV gαβ (2.61)

where

δV gαβ = V γ∂γgαβ + (∂αV
γ)gγβ + (∂βV

γ)gαγ (2.62)

Thus the condition for the infinitesimal transformation (2.57) to leave the La-

grangian invariant is

δV gαβ = 0 . (2.63)
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Noether’s theorem then leads to the corresponding conserved charge

QV = pαV
α = gαβV

αẋβ . (2.64)

Note that for constant components V α, (2.63) is simply the statement that the

metric is constant in the direction V , V γ∂γgαβ = 0.

2. Alternatively, we can determine the variation δV gαβ of the components gαβ of the

metric in x-coordinates from the variation (2.56) of the components gµν of the

metric in y-coordinates by demanding that under a coordinate transformation the

variation (2.56) of the metric transforms like the metric. Since we know how the

metric transforms (1.51), and we also know how ∂y1 transforms,

gµν = Jαµ J
β
ν gαβ , ∂y1 = (∂y1x

α)∂α ≡ Jα1 ∂α ≡ V α∂α (2.65)

we find the condition

∂y1gµν = Jγ1 ∂γ(J
α
µ J

β
ν gαβ)

!
= Jαµ J

β
ν δV gαβ

⇔ δV gαβ = JµαJ
ν
βJ

γ
1 ∂γ(J

δ
µJ

ǫ
νgδǫ) .

(2.66)

In order to disentangle this, one can make use of identities such as

Jγ1 ∂γJ
δ
µ = ∂1J

δ
µ = ∂µJ

δ
1 = ∂µV

δ = Jαµ ∂αV
δ (2.67)

to show that this expression for δV gαβ is identical to that given in (2.62).

All of this may seem a bit ham-handed at this point, and indeed it is. However, we

will see later how these results can be written and understood in a much more pleasing

and covariant way. In particular, we will see in section 4.5 how to write (2.62) in a way

that makes it completely manifest that it transforms like the metric under coordinate

transformations. Moreover, we will discover in section 6 that (2.62) is a special case

of the Lie derivative of a tensor field. Continuous symemtries of a metric correspond

to vector fields along which the Lie derivative of the metric vanishes. Such vectors are

known as Killing vectors, and are thus vectors V α satisfying the Killing equation (2.63),

LV gαβ ≡ δV gαβ = 0 . (2.68)

2.6 The Newtonian Limit

We saw that the 10 components of the metric gµν appear to play the role of potentials for

the gravitational force. In order to substantiate this, and to show that in an appropriate

limit this setting is able to reproduce the Newtonian results, we now want to find the

relation of these potentials to the Newtonian potential, and the relation between the

geodesic equation and the Newtonian equation of motion for a particle moving in a

gravitational field.
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First let us determine the conditions under which we might expect the general relativistic

equation of motion (namely the non-linear coupled set of partial differential geodesic

equations) to reduce to the linear equation of motion

d2

dt2
~x = −~∇φ (2.69)

of Newtonian mechanics, with φ the gravitational potential, e.g.

φ = −GM
r

. (2.70)

Thus we are trying to characterise the circumstances in which we know and can trust

the validity of Newton’s equations, such as those provided e.g. by the gravitational field

of the earth or the sun, the gravitational fields in which Newton’s laws were discovered

and tested. Two of these are fairly obvious:

1. Weak Fields: our first plausible assumption is that the gravitational field is in a

suitable sense sufficiently weak. We will need to make more precise by what we

mean by this, and we will come back to this below.

2. Slow Motion: our second, equally reasonable and plausible, assumption is that the

test particle moves at speeds at which we can neglect special relativistic effects, so

“slow” should be taken to mean that its velocity is small compared to the velocity

of light.

Interestingly, it turns out that one more condition is required. Note that the gravita-

tional fields we have access to are not only quite weak but also only very slowly varying

in time, and we will add this condition,

3. Stationary Fields: we will assume that the gravitational field does not vary sig-

nificantly in time (over the time scale probed by our test particle).

The very fact that we have to add this condition in order to find Newton’s equations

(as will be borne out by the calculations below) is interesting in its own right, because

it also shows that general relativity predicts phenomena deviating from the Newtonian

picture even for weak fields, provided that they vary sufficiently rapidly (e.g. quickly

oscillating fields), and one such phenomenon is that of gravitational waves (see section

19).

Now, having formulated in words the conditions that we wish to impose, we need to

translate these conditions into equations that we can then use in conjunction with the

geodesic equation.

1. In order to define a notion of weak fields, we need to keep in mind that this is

not a coordinate-independent statement since we can simulate arbitrarily strong
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gravitational fields even in Minkowski space by going to suitably accelerated co-

ordinates, and therefore a “weak field” condition will be a condition not only on

the metric but also on the choice of coordinates. Thus we assume that we can

choose coordinates {xµ} = {t, xi} in such a way that in these coordinates the

metric differs from the standard constant Minkowski metric ηµν only by a small

amount,

gµν = ηµν + hµν (2.71)

where we will implement “by a small amount” in the calculations below by drop-

ping all terms that are at least quadratic in hµν .

2. The second condition is obviously (with the coordinates chosen above) dxi/dt ≪ 1

or, expressed in terms of proper time,

dxi

dτ
≪ dt

dτ
. (2.72)

3. The third condition of stationarity we implement simply by considering time-

independent fields,

gαβ ,0 = 0 ⇒ hαβ ,0 = 0 . (2.73)

Now we look at the geodesic equation. The condition of slow motion (condition 2)

implies that the geodesic equation can be approximated by

ẍµ + Γµ00ṫ
2 = 0 . (2.74)

Stationarity (condition 3) tells us that

Γµ00 = −1
2g
µν∂νg00 = −1

2g
µi∂ig00 . (2.75)

From the weak field condition (condition 1), which allows us to write

gµν = ηµν + hµν ⇒ gµν = ηµν − hµν , (2.76)

where

hµν = ηµληνρhλρ , (2.77)

we learn that

Γµ00 = −1
2η

µi∂ih00 , (2.78)

so that the relevant Christoffel symbols are

Γ0
00 = 0 , Γi00 = −1

2∂
ih00 . (2.79)

Thus the geodesic equation splits into

ẗ = 0

ẍi = 1
2∂ih00ṫ

2 . (2.80)
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As the first of these just says that ṫ is constant, we can use this in the second equation to

convert the τ -derivatives into derivatives with respect to the coordinate time t. Hence

we obtain
d2xi

dt2
= 1

2h00,i (2.81)

(the spatial index i in this expression is raised or lowered with the Kronecker symbol,

ηik = δik). Comparing this with the Newtonian equation (2.69),

d2xi

dt2
= −φ,i (2.82)

leads us to the identification h00 = −2φ, with the constant of integration absorbed into

an arbitrary constant term in the gravitational potential. By relating this back to gαβ ,

g00 = −(1 + 2φ) . (2.83)

we find the sought-for relation between the Newtonian potential and the space-time

metric. For the gravitational field of isolated systems, it makes sense to choose the

integration constant in such a way that the potential goes to zero at infinity, and this

choice also ensures that the metric approaches the flat Minkowski metric at infinity.

Restoring the appropriate units, in particular a factor of c2, one finds that φ/c2 ∼ 10−9

on the surface of the earth, 10−6 on the surface of the sun (see section 11.5 for some

more details), so that the distortion in the space-time geometry produced by gravitation

is in general quite small (justifying our approximations).

Note that it does not make sense in this approximation to inquire about the other

components of the metric. As we have seen, a slowly moving particle in weak stationary

gravitational field is not sensitive to them, and hence can also not be used to probe

or determine these components. Later on, we will determine the exact solution for the

metric outside a spherically symmetric mass distribution (the Schwarzschild metric), and

from this one can then also read off that the leading correction to the flat metric arises

from the 00-component of the metric, but one can then also determine the subleading

“post-Newtonian” corrections to the gravitational field.

2.7 The Gravitational Red-Shift

The gravitational red-shift (i.e. the fact that photons lose or gain energy when rising or

falling in a gravitational field) is a consequence of the Einstein Equivalence Principle

(and therefore also provides an experimental test of the Einstein Equivalence Principle).

It is clear from the expression dτ2 = −gµν(x)dxµdxν that e.g. the rate of clocks is

affected by the gravitational field. However, as everything is affected in the same way

by gravity it is impossible to measure this effect locally. In order to find an observable

effect, one needs to compare data from two different points in a gravitational potential.
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The situation we could consider is that of two observers A and B moving on worldlines

(paths) γA and γB , A sending light signals to B. In general the frequency, measured

in the observers rest-frame at A (or in a locally inertial coordinate system there) will

differ from the frequency measured by B upon receiving the signal.

In order to separate out Doppler-like effects due to relative velocities, we consider two

observers A and B at rest radially to each other, at radii rA and rB , in a stationary

spherically symmetric gravitational field. This means that the metric depends only on

a radial coordinate r and we can choose it to be of the form

ds2 = g00(r)dt
2 + grr(r)dr

2 + r2dΩ2 , (2.84)

where dΩ2 is the standard volume element on the two-sphere (see section 11 for a more

detailed justification of this ansatz for the metric).

Observer A sends out light of a given frequency νA, say n pulses per proper time unit

∆τA. Observer B receives these n pulses in his proper time ∆τB and interprets this

as a frequency νB . Thus the relation between the frequency νA emitted at A and the

frequency νB observed at B is
νA
νB

=
∆τB
∆τA

. (2.85)

I will now give two arguments to show that this ratio depends on the metric (i.e. the

gravitational field) at rA and rB through

νA
νB

= (g00(rB)/g00(rA))1/2 . (2.86)

1. The first argument is essentially one based on geometric optics (and is best ac-

companied by drawing a (1+1)-dimensional space-time diagram of the light rays

and worldlines of the observers).

The geometry of the situation dictates that the coordinate time intervals recorded

at A and B are equal, ∆tA = ∆tB as nothing in the metric actually depends on

t. In equations, this can be seen as follows. First of all, the equation for a radial

light ray is

−g00(r)dt2 = grr(r)dr
2 , (2.87)

or
dt

dr
= ±

(
grr(r)

−g00(r)

)1/2

. (2.88)

From this we can calculate the coordinate time for the light ray to go from A to

B. Say that the first light pulse is emitted at point A at time t(A)1 and received

at B at coordinate time t(B)1. Then

t(B)1 − t(A)1 =

∫ rB

rA

dr(−grr(r)/g00(r))1/2 (2.89)
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But the right hand side obviously does not depend on t, so we also have

t(B)2 − t(A)2 =

∫ rB

rA

dr(−grr(r)/g00(r))1/2 (2.90)

where t2 denotes the coordinate time for the arrival of the n-th pulse. Therefore,

t(B)1 − t(A)1 = t(B)2 − t(A)2 , (2.91)

or

t(A)2 − t(A)1 = t(B)2 − t(B)1 , (2.92)

as claimed. Thus the coordinate time intervals recorded at A and B between the

first and last pulse are equal. However, to convert this to proper time, we have to

multiply the coordinate time intervals by an r-dependent function,

∆τA,B = (−gµν(rA,B)
dxµ

dt

dxν

dt
)1/2∆tA,B , (2.93)

and therefore the proper time intervals will not be equal. For observers at rest,

dxi/dt = 0, one has

∆τA,B = (−g00(rA,B))1/2∆tA,B . (2.94)

Since ∆tA = ∆tB, (2.86) now follows from (2.85).

2. The second argument uses the null geodesic equation, in particular the conserved

quantity associated to time-translations (recall that we have assumed that the

metric (2.84) is time-independent), as well as a somewhat more covariant looking,

but equivalent, notion of frequency.

First of all, let the light ray be described the wave vector kµ. In special relativity,

we would parametrise this as kµ = (ω,~k) with ω = 2πν the frequency. This is the

frequency observed by an inertial observer at rest, with 4-velocity uµ = (1, 0, 0, 0).

A Lorentz-invariant, and thus in our context now coordinate-independent, notion

of the frequency as measured by an observer with velocity uµ is thus

ω = −uµkµ . (2.95)

This includes as special cases the relativistic Doppler effect (where one compares

ω with ω̄ = −ūµkµ, ūµ the tangent to the world line of a boosted observer), as

well as the gravitational red-shift we want to discuss here.

A static observer in the spherically-symmetric and static gravitational field (2.84)

is described by the 4-velocity

uµ = (u0, 0, 0, 0) gµνu
µuν = g00(u

0)2 = −1 . (2.96)

Thus for the static observer at r = rA, say, one has

u0
A = (−g00(rA))−1/2 (2.97)
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(and likewise for the observer at r = rB). The wave vector kµ is a null tangent

vector, kµkµ = 0, to a null geodesic corresponding to the Lagrangian

L = 1
2gαβ ẋ

αẋβ = 1
2g00(r)ṫ

2 + . . . (2.98)

Since the metric is time-independent, there is (cf. the discussion in section 2.4)

the corresponding conserved quantity

E = −∂L
∂ṫ

= −g00(r)ṫ (2.99)

(the minus sign serving only to make this quantity positive for ṫ > 0). Then one

finds that the frequency measured by the stationary observer at r = rA is

ωA = −uµAkµ = − (−g00(rA))−1/2 k0 = − (−g00(rA))−1/2 g0µ(rA)ẋµ

= − (−g00(rA))−1/2 g00(rA)ṫ = E (−g00(rA))−1/2
(2.100)

Since E is a conserved quantity, i.e. the same for the light ray at r = rA or r = rB ,

one sees that ωA/ωB = νA/νB is given by (2.86), as claimed.

Note also that this derivation shows that the relation between ω and E is exactly

like the relation (2.94) between (∆τ)−1 and (∆t)−1, which provides us with an

interpreteation of the conserved quantity E for a massless particle / photon: it

is the frequency measured with respect to coordinate time (as the momentum

conjugate to the time-coordinate t this should not be too surprising).

Using the Newtonian approximation, (2.86) becomes

νA
νB

∼ 1 + φ(rB) − φ(rA) , (2.101)

or
νA − νB
νB

=
GM(rB − rA)

rArB
(2.102)

Note that, for example, for rB > rA one has νB < νA so that, as expected, a photon

loses energy when rising in a gravitational field.

This result can also be deduced from energy conservation. A local inertial observer at

the emitter A will see a change in the internal mass of the emitter ∆mA = −hνA when a

photon of frequency of νA is emitted. Likewise, the absorber at point B will experience

an increase in inertial mass by ∆mB = hνB . But the total internal plus gravitational

potential energy must be conserved. Thus

0 = ∆mA(1 + φ(rA)) + ∆mB(1 + φ(rB)) , (2.103)

leading to
νA
νB

=
1 + φ(rB)

1 + φ(rA)
∼ 1 + φ(rB) − φ(rA) , (2.104)
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as before. This “derivation” (in quotes, because we are wildly mixing Newtonian gravity,

special relativity and quantum mechanics - do take this “derivation” with an appropri-

ately sized grain of salt, please) shows that gravitational red-shift experiments test the

Einstein Equivalence Principle in its strong form, in which the term ‘laws of nature’ is

not restricted to mechanics (inertial = gravitational mass), but also includes quantum

mechanics in the sense that it tests if in an inertial frame the relation between photon

energy and frequency is unaffected by the presence of a gravitational field.

While difficult to observe directly (by looking at light form the sun), this prediction

has been verified in the laboratory, first by Pound and Rebka (1960), and subsequently,

with one percent accuracy, by Pound and Snider in 1964 (using the Mössbauer effect).

Let us make some rough estimates of the expected effect. We first consider light reaching

us (B) from the sun (A). In this case, we have rB ≫ rA, where rA is the radius of the

sun, and (also inserting a so far suppressed factor of c2) we obtain

νA − νB
νB

=
GM(rB − rA)

c2rArB
≃ GM

c2rA
. (2.105)

Using the approximate values

rA ≃ 0.7 × 106 km

Msun ≃ 2 × 1033 g

G ≃ 7 × 10−8 g−1cm3s−2

Gc−2 ≃ 7 × 10−29 g−1cm = 7 × 10−34 g−1km , (2.106)

one finds
∆ν

ν
≃ 2 × 10−6 . (2.107)

In principle, such a frequency shift should be observable. In practice, however, the

spectral lines of light emitted by the sun are strongly effected e.g. by convection in the

atmosphere of the sun (Doppler effect), and this makes it difficult to measure this effect

with the required precision.

In the Pound-Snider experiment, the actual value of ∆ν/ν is much smaller. In the orig-

inal set-up one has rB − rA ≃ 20m (the distance from floor to ceiling of the laboratory),

and rA = rearth ≃ 6.4 × 106m, leading to

∆ν

ν
≃ 2.5 × 10−15 . (2.108)

However, here the experiment is much better controlled, and the gravitational red-shift

was verified with 1% accuracy.

2.8 Locally Inertial and Riemann Normal Coordinates

Central to our initial discussion of gravity was the Einstein Equivalence Principle which

postulates the existence of locally inertial (or freely falling) coordinate systems in which
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locally at (or around) a point the effects of gravity are absent. Now that we have decided

that the arena of gravity is a general metric space-time, we should establish that such

coordinate systems indeed exist. Looking at the geodesic equation, it it is clear that

‘absence of gravitational effects’ is tantamount to the existence of a coordinate system

{ξA} in which at a given point p the metric is the Minkowski metric, gAB(p) = ηAB and

the Christoffel symbol is zero, ΓABC(p) = 0. Owing to the identity

gµν ,λ = Γµνλ + Γνµλ , (2.109)

the latter condition is equivalent to gAB ,C (p) = 0. I will sketch three arguments estab-

lishing the existence of such coordinate systems, each one having its own virtues and

providing its own insights into the issue.

Actually it is physically plausible (and fortuitously moreover true) that one can always

find coordinates which embody the equivalence principle in the stronger sense that the

metric is the flat metric ηAB and the Christoffel symbols are zero not just at a point but

along the entire worldline of an inertial (freely falling) observer, i.e. along a geodesic.

Such coordinates, based on a geodesic rather than on a point, are known as Fermi

normal coordinates. The construction is similar to that of Riemann normal coordinates

(based at a point) to be discussed below.

1. Direct Construction

We know that given a coordinate system {ξA} that is inertial at a point p, the

metric and Christoffel symbols at p in a new coordinate system {xµ} are deter-

mined by (1.33,1.40). Conversely, we will now see that knowledge of the metric

and Christoffel symbols at a point p is sufficient to construct a locally inertial

coordinate system at p.

Equation (1.40) provides a second order differential equation in some coordinate

system {xµ} for the inertial coordinate system {ξA}, namely

∂2ξA

∂xν∂xλ
= Γµνλ

∂ξA

∂xµ
. (2.110)

By a general theorem, a local solution around p with given initial conditions ξA(p)

and (∂ξA/∂xµ)(p) is guaranteed to exist. In terms of a Taylor series expansion

around p one has

ξA(x) = ξA(p)+
∂ξA

∂xµ
|p(xµ− pµ)+

1

2

∂ξA

∂xµ
|pΓµνλ(p)(xν − pν)(xλ− pλ)+ . . . (2.111)

It follows from (1.33) that the metric at p in the new coordinate system is

gAB(p) = gµν(p)
∂xµ

∂ξA
|p
∂xν

∂ξB
|p . (2.112)
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Since a symmetric matrix (here the metric at the point p) can always be diago-

nalised by a similarity transformation, for an appropriate choice of initial condi-

tion (∂ξA/∂xµ)(p) one can arrange that gAB(p) is the standard Minkowski metric,

gAB(p) = ηAB .

With a little bit more work it can also be shown that in these coordinates (2.111)

one also has gAB ,C (p) = 0. Thus this is indeed an inertial coordinate system at

p.

As the matrix (∂ξA/∂xµ)(p) which transforms the metric at p into the standard

Minkowski form is only unique up to Lorentz transformations, overall (counting

also the initial condition ξA(p)) a locally inertial coordinate system is unique only

up to Poincaré transformations - an unsurprising result.

2. Geodesic (or Riemann Normal) Coordinates

A slightly more insightful way of constructing a locally inertial coordinate system,

rather than by directly solving the relevant differential equation, makes use of

geodesics at p. Recall that in Minkowski space the metric takes the simplest

possible form in coordinates whose coordinate lines are geodesics. One might

thus suspect that in a general metric space-time the metric will also (locally) look

particularly simple when expressed in terms of such geodesic coordinates. Since

locally around p we can solve the geodesic equation with four linearly independent

initial conditions, we can assume the existence of a coordinate system {ξA} in

which the coordinate lines are geodesics ξA(τ) = ξAτ . But this means that ξ̈A = 0.

Hence the geodesic equation reduces to

ΓABC ξ̇
B ξ̇C = 0 . (2.113)

As at p the ξ̇A were chosen to be linearly independent, this implies ΓABC(p) = 0,

as desired. It is easy to see that the coordinates ξA can also be chosen in such a

way that gAB(p) = ηAB (by choosing the four directions at p to be orthonormal

unit vectors).

As an example, consider the standard metric ds2 = dθ2 + sin2 θdφ2 on the two-

sphere. Any point is as good as any other point, and one can construct an inertial

coordinate system at the north pole θ = 0 in terms of geodesics shot off from the

north pole into the φ = 0 (ξ1) and φ = π/2 (ξ2) directions. The affine parameter

along a great circle (geodesic) connecting the north pole to a point (θ, φ) is θ, and

thus θ is also the geodesic distance, and the coordinates of the point (θ, φ) are

(ξ1 = θ cosφ, ξ2 = θ sinφ). In particular, the north pole is the origin ξ1 = ξ2 = 0.

Calculating the metric in these new components one finds (exercise! see also e.g.

Hartle’s Gravity) that gAB(ξ) = δAB + O(ξ2), so that gAB(ξ = 0) = δAB and

gAB,C(ξ = 0) = 0, as required. Note also that one could have guessed these

coordinates from the fact that near θ = 0 the metric is dθ2 + θ2dφ2, which is the

Euclidean metric in polar coordinates (θ cosφ, θ sinφ).
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3. A Numerological Argument

This is my favourite argument because it requires no calculations and at the same

time provides additional insight into the nature of curved space-times.

Assuming that the local existence of solutions to differential equations is guaran-

teed by some mathematical theorems, it is frequently sufficient to check that one

has enough degrees of freedom to satisfy the desired initial conditions (one may

also need to check integrability conditions). In the present context, this argument

is useful because it also reveals some information about the ‘true’ curvature hidden

in the second derivatives of the metric. It works as follows:

Consider a Taylor expansion of the metric around p in the sought-for new coordi-

nates. Then the metric at p will transform with the matrix (∂xµ/∂ξA)(p). This

matrix has (4× 4) = 16 independent components, precisely enough to impose the

10 conditions gAB(p) = ηAB up to Lorentz transformations.

The derivative of the metric at p, gAB ,C (p), will appear in conjunction with the

second derivative ∂2xµ/∂ξA∂ξB . The 4 × (4 × 5)/2 = 40 coefficients are precisely

sufficient to impose the 40 conditions gAB ,C (p) = 0.

Now let us look at the second derivatives of the metric. gAB ,CD has (10 ×
10) = 100 independent components, while the third derivative of xµ(ξ) at p,

∂3xµ/∂ξA∂ξB∂ξC has 4 × (4 × 5 × 6)/(2 × 3) = 80 components. Thus 20 linear

combinations of the second derivatives of the metric at p cannot in general be

set to zero by a coordinate transformation. Thus these encode the information

about the real curvature at p. This agrees nicely with the fact that the Riemann

curvature tensor we will construct later turns out to have precisely 20 independent

components.

Repeating this argument in space-time dimension n, one finds that the number of

2nd derivatives of the metric modulo coordinate transformations is

(
n(n+ 1)

2

)2

− n
n(n+ 1)(n+ 2)

6
=

1

12
n2(n2 − 1) . (2.114)

Again this turns out to agree with the number of independent components of the

curvature tensor in n dimensions.
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Note: At this point in the course I find it useful to develop in parallel (and suggest to

read in parallel)

• the more formal material on tensor analysis in sections 3 - 8, say,

• and a detailed discussion of the basic properties of the Schwarzschild metric (sec-

tions 11.5 - 13),

since much of the latter (in particular geodesics, solar system tests of general relativity,

even the issues that arise in connection with the Schwarzschild radius) can be understood

just on the basis of what has been done so far (if, for the time being, one accepts on

faith that the Schwarzschild metric is the unique spherically symmetric vacuum solution

of the Einstein field equations). Not only is this an interesting and physically relevant

application of the machinery developed so far, it also provides an appropriate balance

between physics and formalism in the lectures.
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3 Tensor Algebra

3.1 From the Einstein Equivalence Principle to the Principle of General

Covariance

The Einstein Equivalence Principle tells us that the laws of nature (including the effects

of gravity) should be such that in an inertial frame they reduce to the laws of Special

Relativity (SR). As we have seen, this can be implemented by transforming the laws

of SR to arbitrary coordinate systems and declaring that these be valid for arbitrary

coordinates and metrics.

However, this is a tedious method in general (e.g. to obtain the correct form of the

Maxwell equations in the presence of gravity) and not particularly enlightning. We

will thus replace the Einstein Equivalence Principle by the closely related Principle of

General Covariance PGC:

A physical equation holds in an arbitrary gravitational field if

1. the equation holds in the absence of gravity, i.e. when gµν = ηµν , Γµνλ =

0, and

2. the equation is generally covariant, i.e. preserves its form under a gen-

eral coordinate transformation.

Concretely, the 2nd condition means the following: assume that you have some physical

equation that in some coordinate system takes the form T = 0, where T = 0 could be

some multi-component (thus T is adorned with various indices) differential equation.

Now perform a coordinate transformation x → y(x), and assume that the new object

T ′ has the form

T ′ = (. . .)T + junk (3.1)

where the term in brackets is some invertible matrix or operator. Then clearly the

presence of the junk-terms means that the equation T ′ = 0 is not equivalent to the

equation T = 0. An example of an object that transform in this way is, as we have seen,

the Christoffel symbols. On the other hand, if these junk terms are absent, so that we

have

T ′ = (. . .)T (3.2)

then clearly T ′ = 0 if and only if T = 0, i.e. the equation is satisfied in one coordinate

system if and only if it is satisfied in any other (or all) coordinate systems. This is the

kind of equation that embodies general covariance, and again we have already seen an

example of such an equation, namely the geodesic equation, where the term (. . .) in

brackets is just the Jacobi matrix. Thus, to be more concrete, we can replace the 2nd

condition above by

59



2’ the equation is generally covariant, i.e. it is satisfied in one coordinate

system iff it is satisfied in all coordinate systems.

Let us now establish the above statement, namely that the Einstein equivalence principle

implies that an equation that satisfies the conditions 1 and 2 (or 2’) is valid in an

arbitrary graviational field:

• consider some equation that satsifies these conditions, and assume that we are in

an arbitrary gravitational field;

• condition 2’ implies that this equation is true (or satisfied) in all coordinate sys-

tems if it is satisfied just in one coordinate system;

• now we know that we can always (locally) construct a freely falling coordinate

system in which the effects of gravity are absent;

• the Einstein Equivalence Principle now posits that in such a reference system the

physics is that of Minkowski space-time;

• condition 1 means that the equation is true (satisfied) there;

• thus it is valid in all coordinate systems;

• since we started off by considering an arbitrary graviational field, it follows that

the equation is now valid in an arbitrary gravitational field, as claimed in the

Principle of General Covariance.

Note that general covariance alone is an empty statement since any equation (whether

correct or not) can be made generally covariant simply by writing it in an arbitrary

coordinate system. It develops its power only when used in conjunction with the Einstein

Equivalence Principle as a statement about physics in a gravitational field, namely that

by virtue of its general covariance an equation will be true in a gravitational field if it

is true in the absence of gravitation.

3.2 Tensors

In order to construct generally covariant equations, we need objects that transform in a

simple way under coordinate transformations. The prime examples of such objects are

tensors.

Scalars

The simplest example of a tensor is a function (or scalar) f which under a coordinate

transformation xµ → yµ
′

(xµ) simply transforms as

f ′(y(x)) = f(x) , (3.3)
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or f ′(y) = f(x(y)). One frequently suppresses the argument, and thus writes simply,

f ′ = f , expressing the fact that, up to the obvious change of argument, functions are

invariant under coordinate transformations.

Vectors

The next simplest case are vectors V µ(x) transforming as

V ′µ′(y(x)) =
∂yµ

′

∂xµ
V µ(x) . (3.4)

A prime example is the tangent vector ẋµ to a curve, for which this transformation

behaviour

ẋµ → ẏµ
′

=
∂yµ

′

∂xµ
ẋµ (3.5)

is just the familiar one.

It is extremely useful to think of vectors as first order differential operators, via the

correspondence

V µ ⇔ V := V µ∂µ . (3.6)

One of the advantages of this point of view is that V is completely invariant under

coordinate transformations as the components V µ of V transform inversely to the basis

vectors ∂µ. For more on this see the (optional) section on the coordinate-independent

interpretation of tensors below.

Covectors

A covector is an object Uµ(x) which under a coordinate transformation transforms

inversely to a vector, i.e. as

U ′

µ′(y(x)) =
∂xµ

∂yµ′
Uµ(x) . (3.7)

A familiar example of a covector is the derivative Uµ = ∂µf of a function which of course

transforms as

∂µ′f
′(y(x)) =

∂xµ

∂yµ′
∂µf(x) . (3.8)

Covariant 2-Tensors

Clearly, given the above objects, we can construct more general objects which transform

in a nice way under coordinate transformations by taking products of them. Tensors in

general are objects which transform like (but need not be equal to) products of vectors

and covectors.

In particular, a covariant 2-tensor, or (0,2)-tensor, is an object Aµν that transforms

under coordinate transformations like the product of two covectors, i.e.

A′

µ′ν′(y(x)) =
∂xµ

∂yµ
′

∂xν

∂yν
′
Aµν(x) . (3.9)
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I will from now on use a shorthand notation in which I drop the prime on the transformed

object and also omit the argument. In this notation, the above equation would then

become

Aµ′ν′ =
∂xµ

∂yµ
′

∂xν

∂yν
′
Aµν . (3.10)

We already know one example of such a tensor, namely the metric tensor gµν (which

happens to be a symmetric tensor).

Contravariant 2-Tensors

Likewise we define a contravariant 2-tensor (or a (2,0)-tensor) to be an object Bµν that

transforms like the product of two vectors,

Bµ′ν′ =
∂yµ

′

∂xµ
∂yν

′

∂xν
Bµν . (3.11)

An example is the inverse metric tensor gµν .

(p, q)-Tensors

It should now be clear how to define a general (p, q)-tensor - as an object T
µ1...µp
ν1...νq

with p contravariant and q covariant indices which under a coordinate transformation

transforms like a product of p vectors and q covectors,

T
µ′

1
...µ′p

ν′
1
...ν′q

=
∂yµ

′

1

∂xµ1

. . .
∂yµ

′

p

∂xµp

∂xν1

∂yν
′

1

. . .
∂xνq

∂yν
′

q
T
µ1...µp
ν1...νq . (3.12)

Note that, in particular, a tensor is zero (at a point) in one coordinate system if and

only if the tensor is zero (at the same point) in another coordinate system.

Thus, any law of nature (field equation, equation of motion) expressed in terms of

tensors, say in the form T
µ1...µp
ν1...νq = 0, preserves its form under coordinate trasformations

and is therefore automatically generally covariant,

T
µ1...µp
ν1...νq = 0 ⇔ T

µ′
1
...µ′p

ν′
1
...ν′q

= 0 (3.13)

An important special example of a tensor is the Kronecker tensor δµν . Together with

scalars and products of scalars and Kronecker tensors it is the only tensor whose com-

ponents are the same in all coordinate systems. I.e. if one demands that δµν transforms

as a tensor, then one finds that it takes the same numerical values in all coordinate

systems, i.e. δ
′µ′

ν′ = δµ
′

ν′ . Conversely, if one posits that δ
′µ′

ν′ = δµ
′

ν′ , one can deduce that

δµν transforms as (i.e. is) a (1, 1)-tensor.

One comment on terminology: it is sometimes useful to distinguish vectors from vector

fields and, likewise, tensors from tensor fields. A vector is then just a vector V µ(x) at

some point x of space-time whereas a vector field is something that assigns a vector to

each point of space-time and, likewise, for tensors and tensor fields.
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Important examples of non-tensors are the Christoffel symbols. Another important

example is the the ordinary partial derivative of a (p, q)-tensor, ∂λT
µ1...µp
ν1...νq which is not

a (p, q+1)-tensor unless p = q = 0. This failure of the partial derivative to map tensors

to tensors will motivate us below to introduce a covariant derivative which generalises

the usual notion of a partial derivative and has the added virtue of mapping tensors to

tensors.

3.3 Tensor Algebra

Tensors can be added, multiplied and contracted in certain obvious ways. The basic

algebraic operations are the following:

1. Linear Combinations

Given two (p, q)-tensors A
µ1...µp
ν1...νq and B

µ1...µp
ν1...νq , their sum

C
µ1...µp
ν1...νq = A

µ1...µp
ν1...νq +B

µ1...µp
ν1...νq (3.14)

is also a (p, q)-tensor.

2. Direct Products

Given a (p, q)-tensor A
µ1...µp
ν1...νq and a (p′, q′)-tensor B

λ1...λp′

ρ1...ρq′
, their direct product

A
µ1...µp
ν1...νqB

λ1...λp′

ρ1...ρq′
(3.15)

is a (p+ p′, q + q′)-tensor,

3. Contractions

Given a (p, q)-tensor with p and q non-zero, one can associate to it a (p−1, q−1)-

tensor via contraction of one covariant and one contravariant index,

A
µ1...µp
ν1...νq → B

µ1...µp−1

ν1...νq−1
= A

µ1...µp−1λ
ν1...νq−1λ

. (3.16)

This is indeed a (p − 1, q − 1)-tensor, i.e. transforms like one. Consider, for ex-

ample, a (1,2)-tensor Aµνλ and its contraction Bν = Aµνµ. Under a coordinate

transformation Bν transforms as a covector:

Bν′ = Aµ
′

ν′µ′

=
∂yµ

′

∂xµ
∂xν

∂yν′
∂xλ

∂yµ′
Aµνλ

=
∂xν

∂yν
′
δλµA

µ
νλ

=
∂xν

∂yν′
Aµνµ =

∂xν

∂yν′
Bν . (3.17)
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A particular example of a contraction is the scalar product between a vector and

a covector which is a scalar.

Note that contraction over different pairs of indices will in general give rise to

different tensors. E.g. Aµνµ and Aµµν will in general be different.

4. Raising and Lowering of Indices

These operations can of course be combined in various ways. A particular impor-

tant operation is, given a metric tensor, the raising and lowering of indices with

the metric. From the above we know that given a (p, q)-tensor A
µ1...µp
ν1...νq , the prod-

uct plus contraction with the metric tensor gµ1νA
µ1...µp
ν1...νq is a (p− 1, q + 1)-tensor.

It will be denoted by the same symbol, but with one index lowered by the metric,

i.e. we write

gµ1νA
µ1...µp
ν1...νq ≡ Aν

µ2...µp
ν1...νq . (3.18)

Note that there are p different ways of lowering the indices, and they will in general

give rise to different tensors. It is therefore important to keep track of this in the

notation. Thus, in the above, had we contracted over the second index instead of

the first, we should write

gµ2νA
µ1...µp
ν1...νq ≡ Aµ1

ν
µ3...µp
ν1...νq . (3.19)

Finally note that this notation is consistent with denoting the inverse metric by

raised indices because

gµν = gµλgνσgλσ . (3.20)

and raising one index of the metric gives the Kronecker tensor,

gµλgλν ≡ gµν = δµν . (3.21)

An observation we will frequently make use of to recognise when some object is a tensor

is the following (occasionally known as the quotient theorem or quotient lemma):

Assume that you are given some object A
µ1...µp
ν1...νq . Then if for every covector Uµ the

contracted object Uµ1
A
µ1...µp
ν1...νq transforms like a (p − 1, q)-tensor, A

µ1...µp
ν1...νq is a (p, q)-

tensor. Likewise for contractions with vectors or other tensors so that if e.g. in an

equation of the form

Aµν = BµνλρC
λρ (3.22)

you know that A transforms as a tensor for every tensor C, then B itself has to be a

tensor.

3.4 Tensor Densities

While tensors are the objects which, in a sense, transform in the nicest and simplest

possible way under coordinate transformations, they are not the only relevant objects.
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An important class of non-tensors are so-called tensor densities. The prime example of

a tensor density is the determinant g := − det gµν of the metric tensor (the minus sign

is there only to make g positive in signature (− + ++)). It follows from the standard

tensorial transformation law of the metric that under a coordinate transformation xµ →
yµ

′

(xµ) this determinant transforms as

g′ = det

(
∂x

∂y

)2

g = det

(
∂y

∂x

)−2

g . (3.23)

An object which transforms in such a way under coordinate transformations is called a

scalar tensor density of weight (-2). In general, a tensor density of weight w is an object

that transforms as

T
µ′

1
...µ′p

ν′
1
...ν′q

= det

(
∂y

∂x

)w ∂yµ′1
∂xµ1

. . .
∂yµ

′

p

∂xµp

∂xν1

∂yν
′

1

. . .
∂xνq

∂yν
′

q
T
µ1...µp
ν1...νq . (3.24)

In particular, this implies that gw/2T ···
··· transforms as (and hence is) a tensor,

g′w/2T
µ′

1
...µ′p

ν′
1
...ν′q

=
∂yµ

′

1

∂xµ1

. . .
∂yµ

′

p

∂xµp

∂xν1

∂yν
′

1

. . .
∂xνq

∂yν
′

q
gw/2T

µ1...µp
ν1...νq . (3.25)

Conversely, therefore, any tensor density of weight w can be written as tensor times

g−w/2.

The relevance of tensor densities arises from the fundamental theorem of integral cal-

culus that says that the integral measure d4x (more generally dnx in dimension n)

transforms as

d4y = det

(
∂y

∂x

)
d4x , (3.26)

i.e. as a scalar density of weight (+1). Thus g1/2d4x is a volume element which is

invariant under coordinate transformations and can be used to define integrals of scalars

(functions) in a general metric (curved) space in a coordinate-independent way as

∫
f :=

∫ √
gd4xf(x) . (3.27)

This will of course be important in order to formulate action principles etc. in a metric

space in a generally covariant way.

This is also frequently the quickest way to determine the volume element in non-

Cartesian coordinates in Euclidean space. Thus, to determine what is the volume

element in spherical coordinates {yk} = (r, θ, φ), say, instead of laboriously determin-

ing the Jacobi matrix for the coordinate transformation, and then (equally laboriously)

calculating its determinant (which would be the standard uninspiring and uninspired

procedure), all one needs to know is the metric in these coordinates to deduce

ds2 = dr2 + r2(dθ2 + sin2 dφ2) ⇒ g = r4 sin2 θ (3.28)
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and therefore

d3x =
√
g d3y = r2 sin θ dr dθ dφ . (3.29)

Note that all this is as it should be. In order to measure things like distances, areas and

volumes, all that one should need to know is the metric, not the Jacobian between two

coordinate systems.

There is one more important tensor density which - like the Kronecker tensor - has

the same components in all coordinate systems. This is the totally anti-symmetric

Levi-Civita symbol ǫµνρσ (taking the values 0,±1) which, as you can check, is a tensor

density of weight (-1) so that g−1/2ǫµνρσ is a tensor (strictly speaking it is a pseudo-

tensor because of its behaviour under reversal of orientation but this will not concern

us here).

The algebraic rules for tensor densities are strictly analogous to those for tensors. Thus,

for example, the sum of two (p, q) tensor densities of weight w (let us call this a (p, q;w)

tensor) is again a (p, q;w) tensor, and the direct product of a (p1, q1;w1) and a (p2, q2;w2)

tensor is a (p1 + p2, q1 + q2;w1 +w2) tensor. Contractions and the raising and lowering

of indices of tensor densities can also be defined just as for ordinary tensors.

3.5 * A Coordinate-Independent Interpretation of Tensors

There is a more invariant and coordinate-independent way of looking at tensors than

we have developed so far. The purpose of this section is to explain this point of view

even though it is not indispensable for an understanding of the remainder of the course.

Consider first of all the derivative df of a function (scalar field) f = f(x). This is

clearly a coordinate-independent object, not only because we didn’t have to specify a

coordinate system to write df but also because

df =
∂f(x)

∂xµ
dxµ =

∂f(y(x))

∂yµ
′

dyµ
′

, (3.30)

which follows from the fact that ∂µf (a covector) and dxµ (the coordinate differentials)

transform inversely to each other under coordinate transformations. This suggests that

it is useful to regard the quantities ∂µf as the coefficients of the coordinate independent

object df in a particular coordinate system, namely when df is expanded in the basis

{dxµ}.

We can do the same thing for any covector Uµ. If Uµ is a covector (i.e. transforms like

one under coordinate transformations), then U := Uµ(x)dx
µ is coordinate-independent,

and it is useful to think of the Uµ as the coefficients of the covector U when expanded

in a coordinate basis, U = Uµdx
µ.
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We can even do the same thing for a general covariant tensor Tµν···. Namely, if Tµ1···µq

is a (0, q)-tensor, then

T := Tµ1···µqdx
µ1 . . . dxµq (3.31)

is coordinate independent. In the particular case of the metric tensor we have already

known and used this. In that case, T is what we called ds2, ds2 = gµνdx
µdxν , which we

know to be invariant under coordinate transformations.

Now, can we do something similar for vectors and other contravariant (or mixed) ten-

sors? The answer is yes. Just as covectors transform inversely to coordinate differentials,

vectors V µ transform inversely to partial derivatives ∂µ. Thus

V := V µ(x)
∂

∂xµ
(3.32)

is coordinate dependent - a coordinate-independent linear first-order differential opera-

tor. One can thus always think of a vector field as a differential operator and this is a

very fruitful point of view.

Acting on a function (scalar) f , V produces the derivative of f along V ,

V f = V µ∂µf . (3.33)

This is also a coordinate independent object, a scalar, arising from the contraction of a

vector and a covector. And this is as it should be because, after all, both a function and

a vector field can be specified on a space-time without having to introduce coordinates

(e.g. by simply drawing the vector field and the profile of the function). Therefore also

the change of the function along a vector field should be coordinate independent and,

as we have seen, it is.

Also this can, in principle, be extended to higher rank tensors, but at this point it

would be very useful to introduce the notion of tensor product, something I will not

do. Fact of the matter is, however, that any (p, q)-tensor T
µ1...µp
ν1...νq can be thought of as

the collection of components of a coordinate independent object T when expanded in a

particular coordinate basis in terms of the dxµ and (∂/∂xµ).
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4 Tensor Analysis

Tensors transform in a nice and simple way under general coordinate transformations.

Thus these appear to be the right objects to construct equations from that satisfy the

Principle of General Covariance.

However, the laws of physics are differential equations, so we need to know how to

differentiate tensors. The problem is that the ordinary partial derivative does not map

tensors to tensors, the partial derivative of a (p, q)-tensor is not a tensor unless p = q = 0.

This is easy to see: take for example a vector V µ. Under a coordinate transformation,

its partial derivative transforms as

∂ν′V
µ′ =

∂xν

∂yν
′

∂

∂xν
∂yµ

′

∂xµ
V µ

=
∂xν

∂yν′
∂yµ

′

∂xµ
∂νV

µ +
∂xν

∂yν′
∂2yµ

′

∂xµ∂xν
V µ . (4.1)

The appearance of the second term shows that the partial derivative of a vector is not

a tensor.

As the second term is zero for linear transformations, you see that partial derivatives

transform in a tensorial way e.g. under Lorentz transformations, so that partial deriva-

tives are all one usually needs in special relativity.

We also see that the lack of covariance of the partial derivative is very similar to the

lack of covariance of the equation ẍµ = 0, and this suggests that the problem can be

cured in the same way - by introducing Christoffel symbols. This is indeed the case.

4.1 The Covariant Derivative for Vector Fields

Let us define the covariant derivative ∇νV
µ of a vector field V µ by

∇νV
µ = ∂νV

µ + ΓµνλV
λ . (4.2)

It follows from the non-tensorial behaviour (1.67) of the Christoffel symbols under coor-

dinate transformations that ∇νV
µ, as defined above, is indeed a (1, 1) tensor. Moreover,

in a locally inertial coordinate system this reduces to the ordinary partial derivative,

and we have thus, as desired, arrived at an appropriate tensorial generalisation of the

partial derivative operator.

We could have also arrived at the above definition in a somewhat more systematic way.

Namely, let {ξA} be an inertial coordinate system. In an inertial coordinate system we

can just use the ordinary partial derivative ∂BV
A. We now define the new (improved,

covariant) derivative ∇νV
µ in any other coordinate system {xµ} by demanding that it
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transforms as a (1,1)-tensor, i.e. we define

∇νV
µ :=

∂xµ

∂ξA
∂ξB

∂xν
∂BV

A . (4.3)

By a straightforward calculation one finds that

∇νV
µ = ∂νV

µ + ΓµνλV
λ , (4.4)

where Γµνλ is our old friend

Γµνλ =
∂xµ

∂ξA
∂2ξA

∂xν∂xλ
. (4.5)

We can thus adopt (4.4) as our definition of the covariant derivative in a general metric

space or space-time (with the Christoffel symbols calculated from the metric in the usual

way).

That ∇µV
ν , defined in this way, is indeed a (1, 1) tensor, now follows directly from the

way we arrived at the definition of the covariant derivative. Indeed, imagine transform-

ing from inertial coordinates to another coordinate system {yµ′}. Then (4.3) is replaced

by

∇ν′V
µ′ :=

∂yµ
′

∂ξA
∂ξB

∂yν′
∂BV

A . (4.6)

Comparing this with (4.3), we see that the two are related by

∇ν′V
µ′ :=

∂yµ
′

∂xµ
∂xν

∂yν′
∇νV

µ , (4.7)

as required.

A word on notation: Frequently, the covariant derivative ∇νV
µ is also denoted by a

semicolon, ∇νV
µ = V µ;ν . Just as for functions, one can also define the covariant

directional derivative of a vector field V along another vector field Xµ by

∇XV
µ ≡ Xν∇νV

µ . (4.8)

4.2 * Invariant Interpretation of the Covariant Derivative

The appearance of the Christoffel-term in the definition of the covariant derivative may

at first sight appear a bit unusual (even though it also appears when one just transforms

Cartesian partial derivatives to polar coordinates etc.). There is a more invariant way

of explaining the appearance of this term, related to the more coordinate-independent

way of looking at tensors explained above. Namely, since the V µ(x) are really just

the coefficients of the vector field V (x) = V µ(x)∂µ when expanded in the basis ∂µ, a

meanigful definition of the derivative of a vector field must take into account not only
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the change in the coefficients but also the fact that the basis changes from point to point

- and this is precisely what the Christoffel symbols do. Writing

∇νV = ∇ν(V
µ∂µ)

= (∂νV
µ)∂µ + V λ(∇ν∂λ) , (4.9)

we see that we reproduce the definition of the covariant derivative if we set

∇ν∂λ = Γµνλ∂µ . (4.10)

Indeed we then have

∇νV ≡ (∇νV
µ)∂µ = (∂νV

µ + ΓµνλV
λ)∂µ , (4.11)

which agrees with the above definition.

It is instructive to check in some examples that the Christoffel symbols indeed describe

the change of the tangent vectors ∂µ. For instance on the plane, in polar coordinates,

one has

∇r∂r = Γµrr∂µ = 0 , (4.12)

which is correct because ∂r indeed does not change when one moves in the radial di-

rection. ∂r does change, however, when one moves in the angular direction given by

∂φ. In fact, it changes its direction proportional to ∂φ but this change is stronger for

small values of r than for larger ones (draw a picture!). This is precisely captured by

the non-zero Christoffel symbol Γφrφ,

∇φ∂r = Γφrφ∂φ =
1

r
∂φ . (4.13)

4.3 Extension of the Covariant Derivative to Other Tensor Fields

Our basic postulates for the covariant derivative are the following:

1. Linearity and Tensoriality

∇µ is a linear operator that maps (p, q)-tensors to (p, q + 1)-tensors

2. Generalisation of the Partial Derivative

On scalars φ, the covariant derivative ∇µ reduces to the ordinary partial derivative

(since ∂µφ is already a covector),

∇µφ = ∂µφ . (4.14)

3. Leibniz Rule

Acting on the direct product of tensors, ∇µ satisfies a generalised Leibniz rule,

∇µ(A
µ1...µp
ν1...νqB

ρ1...ρr

λ1...λs
) = ∇µ(A

µ1...µp
ν1...νq)B

ρ1...ρr

λ1...λs
+A

µ1...µp
ν1...νq∇µB

ρ1...ρr

λ1...λs
(4.15)
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We will now see that, demanding the above properties, in particular the Leibniz rule,

there is a unique extension of the covariant derivative on vector fields to a differential

operator on general tensor fields, mapping (p, q)- to (p, q + 1)-tensors.

To define the covariant derivative for covectors Uµ, we note that UµV
µ is a scalar for

any vector V µ so that

∇µ(UνV
ν) = ∂µ(UνV

ν) = (∂µUν)V
ν + Uν(∂µV

ν) (4.16)

(since the partial derivative satisfies the Leibniz rule), and we demand

∇µ(UνV
ν) = (∇µUν)V

ν + Uν∇µV
ν . (4.17)

As we know ∇µV
ν , these two equations determine ∇µUν uniquely to be

∇µUν = ∂µUν − ΓλµνUλ . (4.18)

That this is indeed a (0, 2)-tensor can either be checked directly or, alternatively, is a

consequence of the quotient theorem.

The extension to other (p, q)-tensors is now immediate. If the (p, q)-tensor is the direct

product of p vectors and q covectors, then we already know its covariant derivative (using

the Leibniz rule again). We simply adopt the same resulting formula for an arbitrary

(p, q)-tensor. The result is that the covariant derivative of a general (p, q)-tensor is the

sum of the partial derivative, a Christoffel symbol with a positive sign for each of the p

upper indices, and a Christoffel with a negative sign for each of the q lower indices. In

equations

∇µT
ν1···νp
ρ1···ρq = ∂µT

ν1···νp
ρ1···ρq

+ Γν1µλT
λν2···νp
ρ1···ρq + . . . + Γ

νp

µλT
ν1···νp−1λ
ρ1···ρq︸ ︷︷ ︸

p terms

− Γλµρ1T
ν1···νp

λρ2···ρq
− . . .− Γλµρq

T
ν1···νp

ρ1···ρq−1λ︸ ︷︷ ︸
q terms

(4.19)

Having defined the covariant derivative for arbitrary tensors, we are also ready to define

it for tensor densities. For this we recall that if T is a (p, q;w) tensor density, then

gw/2T is a (p, q)-tensor. Thus ∇µ(g
w/2T ) is a (p, q + 1)-tensor. To map this back to a

tensor density of weight w, we multiply this by g−w/2, arriving at the definition

∇µT := g−w/2∇µ(g
w/2T ) . (4.20)

Working this out explictly, one finds

∇µT =
w

2g
(∂µg)T + ∇tensor

µ T , (4.21)
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where ∇tensor
µ just means the usual covariant derivative for (p, q)-tensors defined above.

For example, for a scalar density φ one has

∇µφ = ∂µφ+
w

2g
(∂µg)φ . (4.22)

In particular, since the determinant g is a scalar density of weight −2, it follows that

∇µg = 0 , (4.23)

which obviously simplifies integrations by parts in integrals defined with the measure
√
gd4x.

4.4 Main Properties of the Covariant Derivative

The main properties of the covariant derivative, in addition to those that were part of

our postulates (like linearity and the Leibniz rule) are the following:

1. ∇µ Commutes with Contraction

This means that if A is a (p, q)-tensor and B is the (p− 1, q − 1)-tensor obtained

by contraction over two particular indices, then the covariant derivative of B is

the same as the covariant derivative of A followed by contraction over these two

indices. This comes about because of a cancellation between the corresponding

two Christoffel symbols with opposite signs. Consider e.g. a (1,1)-tensor Aνρ and

its contraction Aνν . The latter is a scalar and hence its covariant derivative is

just the partial derivative. This can also be obtained by taking first the covariant

derivative of A,

∇µA
ν
ρ = ∂µA

ν
ρ + ΓνµλA

λ
ρ − ΓλµρA

ν
λ , (4.24)

and then contracting:

∇µA
ν
ν = ∂µA

ν
ν + ΓνµλA

λ
ν − ΓλµνA

ν
λ = ∂µA

ν
ν . (4.25)

The most transparent way of stating this property is that the Kronecker delta is

covariantly constant, i.e. that

∇µδ
ν
λ = 0 . (4.26)

To see this, we use the Leibniz rule to calculate

∇µA
ν...
ν... = ∇µ(A

ν...
ρ...δ

ρ
ν)

= (∇µA
ν...
ρ...)δ

ρ
ν +Aν...ρ...∇µδ

ρ
ν

= (∇µA
ν...
ρ...)δ

ρ
ν (4.27)
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which is precisely the statement that covariant differentiation and contraction

commute. To establish that the Kronecker delta is covariantly constant, we follow

the rules to find

∇µδ
ν
λ = ∂µδ

ν
λ + Γνµρδ

ρ
λ − Γρµλδ

ν
ρ

= Γνµλ − Γνµλ = 0 . (4.28)

2. The Metric is Covariantly Constant: ∇µgνλ = 0

This is one of the key properties of the covariant derivative ∇µ we have defined.

I will give two arguments to establish this:

(a) Since ∇µgνλ is a tensor, we can choose any coordinate system we like to

establish if this tensor is zero or not at a given point x. Choose an inertial

coordinate system at x. Then the partial derivatives of the metric and the

Christoffel symbols are zero there. Therefore the covariant derivative of the

metric is zero. Since ∇µgνλ is a tensor, this is then true in every coordinate

system.

(b) The other argument is by direct calculation. Recalling the identity

∂µgνλ = Γνλµ + Γλνµ , (4.29)

we calculate

∇µgνλ = ∂µgνλ − Γρµνgρλ − Γρµλgνρ

= Γνλµ + Γλνµ − Γλµν − Γνµλ

= 0 . (4.30)

3. ∇µ Commutes with Raising and Lowering of Indices

This is really a direct consequence of the covariant constancy of the metric. For

example, if Vµ is the covector obtained by lowering an index of the vector V µ,

Vµ = gµνV
ν , then

∇λVµ = ∇λ(gµνV
ν) = gµν∇λV

ν . (4.31)

4. Covariant Derivatives Commute on Scalars

This is of course a familiar property of the ordinary partial derivative, but it is

also true for the second covariant derivatives of a scalar and is a consequence of

the symmetry of the Christoffel symbols in the second and third indices and is

also knowns as the no torsion property of the covariant derivative. Namely, we

have

∇µ∇νφ−∇ν∇µφ = ∇µ∂νφ−∇ν∂µφ

= ∂µ∂νφ− Γλµνφ− ∂ν∂µφ+ Γλνµφ = 0 . (4.32)

Note that the second covariant derivatives on higher rank tensors do not commute

- we will come back to this in our discussion of the curvature tensor later on.
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4.5 Tensor Analysis: Some Special Cases

In this section I will, without proof, give some useful special cases of covariant derivatives

- covariant curl and divergence etc. - you should make sure that you can derive all of

these yourself without any problems.

1. The Covariant Curl of a Covector

One has

∇µUν −∇νUµ = ∂µUν − ∂νUµ , (4.33)

because the symmetric Christoffel symbols drop out in this antisymmetric linear

combination. Thus the Maxwell field strength Fµν = ∂µAν−∂νAµ is a tensor under

general coordinate transformations, no metric or covariant derivative is needed to

make it a tensor in a general space time.

2. The Covariant Curl of an Antisymmetric Tensor

Let Aνλ··· be completely antisymmetric. Then, as for the curl of covectors, the

metric and Christoffel symbols drop out of the expression for the curl, i.e. one has

∇[µAνλ··· ] = ∂[µAνλ··· ] . (4.34)

Here the square brackets on the indices denote complete antisymmetrisation. In

particular, the Bianchi identity for the Maxwell field strength tensor is independent

of the metric also in a general metric space time.

3. The Covariant Divergence of a Vector

By the covariant divergence of a vector field one means the scalar

∇µV
µ = ∂µV

µ + ΓµµλV
λ . (4.35)

Now a useful identity for the contracted Christoffel symbol is

Γµµλ = g−1/2∂λ(g
+1/2) . (4.36)

Here is an elementary proof of this identity (an alternative standard proof can be based on

the identity detM = exp tr logM and its derivative or variation): the standard (cofactor

or minor) expansion formula for the determinant is

g =
∑

ν

(−1)µ+νgµν |mµν | , (4.37)

where |mµν | is the determinant of the minor of gµν , i.e. of the matrix one obtains by

removing the µ’th row and ν’th column from gµν . It follows that

∂g

∂gµν

= (−1)µ+ν |mµν | . (4.38)
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Another consequence of (4.37) is

∑

ν

(−1)µ+νgλν |mµν | = 0 λ 6= µ , (4.39)

since this is, in particular, the determinant of a matrix with gµν = gλν , i.e. of a matrix

with two equal rows.

Together, these two results can be written as

∑

ν

(−1)µ+νgλν |mµν | = δλµg . (4.40)

Multiplying (4.38) by gλν and using (4.40), one finds

gλν

∂g

∂gµν

= δλµg (4.41)

or the simple identity
∂g

∂gµν

= gµνg . (4.42)

Thus

∂λg =
∂g

∂gµν

∂λgµν = ggµν∂λgµν . (4.43)

or

g−1∂λg = gµν∂λgµν . (4.44)

On the other hand, the contracted Christoffel symbol is

Γµ
µλ =

1

2
gµν∂λgµν , (4.45)

which establishes the identity (4.36).

Thus the covariant divergence can be written compactly as

∇µV
µ = g−1/2∂µ(g

+1/2V µ) , (4.46)

and one only needs to calculate g and its derivative, not the Christoffel symbols

themselves, to calculate the covariant divergence of a vector field.

4. The Covariant Laplacian of a Scalar

How should the Laplacian be defined? Well, the obvious guess (something that

is covariant and reduces to the ordinary Laplacian for the Minkowski metric) is

2 = gµν∇µ∇ν , which can alternatively be written as

2 = gµν∇µ∇ν = ∇µ∇µ = ∇µ∇µ = ∇µg
µν∇ν (4.47)

etc. Note that, even though the covariant derivative on scalars reduces to the

ordinary partial derivative, so that one can write

2φ = ∇µg
µν∂νφ , (4.48)

it makes no sense to write this as ∇µ∂
µφ: since ∂µ does not commute with the

metric in general, the notation ∂µ is at best ambiguous as it is not clear whether
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this should represent gµν∂ν or ∂νg
µν or something altogether different. This am-

biguity does not arise for the Minkowski metric, but of course it is present in

general.

A compact yet explicit expression for the Laplacian follows from the expression

for the covariant divergence of a vector:

2φ := gµν∇µ∇νφ

= ∇µ(g
µν∂νφ)

= g−1/2∂µ(g
1/2gµν∂νφ) . (4.49)

This formula is also useful (and provides the quickest way of arriving at the result)

if one just wants to write the ordinary flat space Laplacian on R
3 in, say, polar or

cylindrical coordinates.

To illustrate this, let us calculate the Laplacian for the standard metric on R
n+1

in polar coordinates. The standard procedure would be to first determine the

coordinate transformation xi = xi(r, angles), then calculate ∂/∂xi, and finally

assemble all the bits and pieces to calculate ∆ =
∑

i(∂/∂x
i)2. This is a pain.

To calculate the Laplacian, we do not need to know the coordinate transformation,

all we need is the metric. In polar coordinates, this metric takes the form

ds2(Rn+1) = dr2 + r2dΩ2
n , (4.50)

where dΩ2
n is the standard line-element on the unit n-sphere Sn. The determinant

of this metric is g ∼ r2n (times a function of the coordinates (angles) on the

sphere). Thus, for n = 1 one has ds2 = dr2 + r2dφ2 and therefore

∆ = r−1∂µ(rg
µν∂ν) = r−1∂r(r∂r) + r−2∂2

φ = ∂2
r + r−1∂r + r−2∂2

φ . (4.51)

In general, denoting the angular part of the Laplacian, i.e. the Laplacian of Sn,

by ∆Sn , one finds analogously

∆ = ∂2
r + nr−1∂r + r−2∆Sn . (4.52)

I hope you agree that this method is superior to the standard procedure.

5. The Covariant Form of Gauss’ Theorem

Let V µ be a vector field, ∇µV
µ its divergence and recall that integrals in curved

space are defined with respect to the integration measure g1/2d4x. Thus one has
∫
g1/2d4x∇µV

µ =

∫
d4x∂µ(g

1/2V µ) . (4.53)

Now the second term is an ordinary total derivative and thus, if V µ vanishes

sufficiently rapidly at infinity, one has
∫
g1/2d4x∇µV

µ = 0 . (4.54)
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6. The Covariant Divergence of an Antisymmetric Tensor

For a (p, 0)-tensor T µν··· one has

∇µT
µν··· = ∂µT

µν··· + ΓµµλT
λν··· + ΓνµλT

µλ··· + . . .

= g−1/2∂µ(g
1/2T µν···) + ΓνµλT

µλ··· + . . . . (4.55)

In particular, if T µν··· is completely antisymmetric, the Christoffel terms disappear

and one is left with

∇µT
µν··· = g−1/2∂µ(g

1/2T µν···) . (4.56)

7. The Lie derivative of the Metric

In section 2.5 we had encountered the expression (2.62) for the variation of the

metric under an infinitesimal coordinate transformation δxα = ǫV α,

δV gαβ = V γ∂γgαβ + (∂αV
γ)gγβ + (∂βV

γ)gαγ . (4.57)

While we saw that this expression could be understood and deduced from the

requirement that the variation of the metric is itself a tensorial object that trans-

forms like the metric, the tensorial nature of the above expression is far from

manifest. However, it has a very nice and simple expression in terms of covariant

derivatives of V , namely

δV gαβ = ∇αVβ + ∇βVα (4.58)

(as is easily verified). This expression will be rederived (and placed into the general

context of Lie derivatives and Killing vectors) in section 6.

You will have noticed that many equations simplify considerably for completely anti-

symmetric tensors. In particular, their curl can be defined in a tensorial way without

reference to any metric. This observation is at the heart of the coordinate indepen-

dent calculus of differential forms. In this context, the curl is known as the exterior

derivative.

Likewise, Lie derivatives of tensors (section 6 and item 7 above) are automatically

tensorial objects (and one can, but need not, make their tensorial nature manifest by

writing these derivatives in terms of covariant derivatives).

4.6 Covariant Differentiation Along a Curve

So far, we have defined covariant differentiation for tensors defined everywhere in space

time. Frequently, however, one encounters tensors that are only defined on curves - like

the momentum of a particle which is only defined along its world line. In this section

we will see how to define covariant differentiation along a curve. Thus consider a curve
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xµ(τ) (where τ could be, but need not be, proper time) and the tangent vector field

Xµ(x(τ)) = ẋµ(τ). Now define the covariant derivative D/Dτ along the curve by

D

Dτ
= Xµ∇µ = ẋµ∇µ . (4.59)

For example, for a vector one has

DV µ

Dτ
= ẋν∂νV

µ + ẋνΓµνλV
λ

=
d

dτ
V µ(x(t)) + Γµνλ(x(t))ẋ

ν(t)V λ(x(t)) . (4.60)

For this to make sense, V µ needs to be defined only along the curve and not necessarily

everywhere in space time.

This notion of covariant derivative along a curve permits us, in particular, to define the

(covariant) acceleration aµ of a curve xµ(τ) as the covariant derivative of the velocity

uµ = ẋµ,

aµ =
D

Dτ
ẋµ = ẍµ + Γµνλẋ

ν ẋλ = uν∇νu
µ . (4.61)

Thus we can characterise (affinely parametrised) geodesics as those curves whose accel-

eration is zero, a reasonable and natural statement regarding the movement of freely

falling particles. If they are not affinely parametrised, as in (2.25), then instead of

uν∇νu
µ = 0 one has

uν∇νu
µ = κuµ . (4.62)

4.7 Parallel Transport and Geodesics

We now come to the important notion of parallel transport of a tensor along a curve.

Note that, in a general (curved) metric space time, it does not make sense to ask if two

vectors defined at points x and y are parallel to each other or not. However, given a

metric and a curve connecting these two points, one can compare the two by dragging

one along the curve to the other using the covariant derivative.

We say that a tensor T ···
··· is parallel transported along the curve xµ(τ) if

DT ···
···

Dτ
= 0 . (4.63)

Here are some immediate consequences of this definition:

1. In a locally inertial coordinate system along the curve, this condition reduces to

dT/dτ = 0, i.e. to the statement that the tensor does not change along the curve.

Thus the above is indeed an appropriate tensorial generalisation of the intuitive

notion of parallel transport to a general metric space-time.
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2. The parallel transport condition is a first order differential equation along the

curve and thus defines T ···
···(τ) given an initial value T ···

···(τ0).

3. Taking T to be the tangent vector Xµ = ẋµ to the curve itself, the condition for

parallel transport becomes

D

Dτ
Xµ = 0 ⇔ ẍµ + Γµνλẋ

ν ẋλ = 0 , (4.64)

i.e. precisely the geodesic equation. Thus geodesics, as we have already seen

these are curves with zero acceleration, can equivalently be characterised by the

property that their tangent vectors are parallel transported (do not change) along

the curve. For this reason geodesics are also known as autoparallels.

4. Since the metric is covariantly constant, it is in particular parallel along any curve.

Thus, in particular, if V µ is parallel transported, also its length remains constant

along the curve,
DV µ

Dτ
= 0 ⇒ D

Dτ
(gµνV

µV ν) = 0 . (4.65)

In particular, we rediscover the fact claimed in (2.17) that the quantity gµν ẋ
µẋν =

gµνX
µXν is constant along a geodesic.

5. Now let xµ(τ) be a geodesic and V µ parallel along this geodesic. Then, as one

might intuitively expect, also the angle between V µ and the tangent vector to the

curve Xµ remains constant. This is a consequence of the fact that both the norm

of V and the norm of X are constant along the curve and that

d

dτ
(gµνX

µV ν) =
D

Dτ
(gµνX

µV ν)

= gµν
D

Dτ
(Xµ)V ν + gµνX

µ D

Dτ
V ν

= 0 + 0 = 0 (4.66)

6. The physical meaning of parallel transport of a vector along a curve is that it

corresponds to a physically invariant direction as determined e.g. by a Foucault

pendulum or a perfect gyroscope.

4.8 * Generalisations

Recall that the transformation behaviour of the Christoffel symbols, equation (1.67), was

the key ingredient in the proof that the geodesic equation transforms like a vector under

general coordinate transformations. Likewise, to show that the covariant derivative of a

tensor is again a tensor all one needs to know is that the Christoffel symbols transform in

this way. Thus any other object Γ̃µνλ could also be used to define a covariant derivative
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(generalizing the partial derivative and mapping tensors to tensors) provided that it

transforms in the same way as the Christoffel symbols, i.e. provided that one has

Γ̃µ
′

ν′λ′ = Γ̃µνλ
∂yµ

′

∂xµ
∂xν

∂yν′
∂xλ

∂yλ′
+
∂yµ

′

∂xµ
∂2xµ

∂yν′∂yλ′
. (4.67)

But this implies that the difference

∆µ
νλ = Γ̃µνλ − Γµνλ (4.68)

transforms as a tensor. Thus, any such Γ̃ is of the form

Γ̃µνλ = Γµνλ + ∆µ
νλ (4.69)

where ∆ is a (1,2)-tensor and the question arises if or why the Christoffel symbols we

have been using are somehow singled out or preferred.

In some sense, the answer is an immediate yes because it is this particular connection

that enters in determining the paths of freely falling particles (the geodesics which

extremise proper time).

Moreover, the covariant derivative as we have defined it has two important properties,

namely

1. that the metric is covariantly constant, ∇µgνλ = 0, and

2. that the torsion is zero, i.e. that the second covariant derivatives of a scalar com-

mute.

In fact, it turns out that these two conditions uniquely determine the Γ̃ to be the

Christoffel symbols. The second condition implies that the Γ̃µνλ are symmetric in the

two lower indices,

[∇̃µ, ∇̃ν ]φ = 0 ⇔ Γ̃λµν = Γ̃λνµ . (4.70)

The first condition now allows one to express the Γ̃λµν in terms of the derivatives of

the metric, leading uniquely to the familiar expression for the Christoffel symbols Γµνλ:

First of all, by definition / construction one has (e.g. from demanding the Leibniz rule

for ∇̃µ)

∇̃µgνλ = ∂µgνλ − Γ̃ρµνgρλ − Γ̃ρµλgνρ

≡ ∂µgνλ − Γ̃λµν − Γ̃νµλ .
(4.71)

Requiring that this be zero implies in particular that

0 = ∇̃µgνλ + ∇̃νgµλ − ∇̃λgµν

= ∂µgνλ + ∂νgµλ − ∂λgµν − Γ̃λµν − Γ̃νµλ − Γ̃λνµ − Γ̃µνλ + Γ̃νλµ + Γ̃µλν

= 2(Γλµν − Γ̃λµν)

(4.72)
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(where the cancellations are entirely due to the assumed symmetry of the coefficients

in the last two indices). Thus Γ̃ = Γ. This unique metric-compatible and torsion-free

connection is also known as the Levi-Civita connection. It is the connection canonically

associated to a space-time (manifold) equipped with a metric tensor.

It is of course possible to relax either of the conditions (1) or (2), or both of them.

Relaxing (1), however, is probably physically not very meaningful (cf. the argument in

section 4.5 for ∇µgνλ = 0 based on the existence of freely falling coordinate systems,

i.e. the equivalence principle).

It is possible, however, to relax (2), and such connections with torsion are popular in

certain circles and play a role in certain generalised theories of gravity. In general,

for such a connection, the notions of geodesics and autoparallels no longer coincide.

However, this difference disappears if ∆ happens to be antisymmetric in its lower indices,

as one then has

ẍµ + Γµνλẋ
ν ẋλ = ẍµ + Γ̃µνλẋ

ν ẋλ , (4.73)

so that the presence of torsion may not readily be experimentally detectable.
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5 Physics in a Gravitational Field

5.1 The Principle of Minimal Coupling

The fact that the covariant derivative ∇ maps tensors to tensors and reduces to the

ordinary partial derivative in a locally inertial coordinate system suggests the following

algorithm for obtaining equations that satisfy the Principle of General Covariance:

1. Write down the Lorentz invariant equations of Special Relativity (e.g. those of

relativistic mechanics, Maxwell theory, relativistic hydrodynamics, . . . ).

2. Wherever the Minkowski metric ηµν appears, replace it by gµν .

3. Wherever a partial derivative ∂µ appears, replace it by the covariant derivative ∇µ

(in particular, for the proper-time derivative along a curve this entails replacing

d/dτ by D/Dτ)

4. Wherever an integral
∫
d4x appears, replace it by

∫ √
gd4x

By construction, these equations are tensorial (generally covariant) and true in the

absence of gravity and hence satisfy the Principle of General Covariance. Hence they

will be true in the presence of gravitational fields (at least on scales small compared to

that of the gravitational fields - if one considers higher derivatives of the metric tensor

then there are other equations that one can write down, involving e.g. the curvature

tensor, that are tensorial but reduce to the same equations in the absence of gravity).

5.2 Particle Mechanics in a Gravitational Field Revisited

We can see the power of the formalism we have developed so far by rederiving the laws

of particle mechanics in a general gravitational field. In Special Relativity, the motion

of a particle with mass m moving under the influence of some external force is governed

by the equation

SR:
dXµ

dτ
=
fµ

m
, (5.1)

where fµ is the force four-vector and Xµ = ẋµ. Thus, using the principle of minimal

coupling, the equation in a general gravitational field is

GR:
DXµ

Dτ
=
fµ

m
, (5.2)

Of course, the left hand side is just the familiar geodesic equation, but we see that

it follows much faster from demanding general covariance (the principle of minimal

coupling) than from our previous considerations.
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5.3 Klein-Gordon Scalar Field in a Gravitational Field

Here is where the formalism we have developed really pays off. We will see once again

that, using the minimal coupling rule, we can immediately rewrite the equations for a

scalar field (here) and the Maxwell equations (below) in a form in which they are valid

in an arbitrary gravitational field.

The action for a (real) free massive scalar field φ in Special Relativity is

SR: S[φ] =

∫
d4x

[
−1

2η
αβ∂αφ∂βφ− 1

2m
2φ2
]
. (5.3)

To covariantise this, we replace d4x → √
gd4x, ηαβ → gαβ , and we could replace ∂α →

∇α (but this makes no difference on scalars). Therefore, the covariant action in a general

gravitational field is

GR: S[φ, gαβ ] =

∫ √
gd4x

[
−1

2g
αβ∂αφ∂βφ− 1

2m
2φ2
]
. (5.4)

Here I have also indicated the dependence of the action on the metric gαβ . This is not

(yet) a dynamical field, though, just the gravitational background field.

The equations of motion for φ one derives from this are

δ

δφ
S[φ, gαβ ] = 0 ⇒

(
2g −m2

)
φ = 0 (5.5)

where 2g = gαβ∇α∇β, the Laplacian associated to the metric gαβ . This is precisely

what one would have obtained by applying the minimal coupling description to the

Minkowski Klein-Gordon equation (2η −m2)φ = 0. [If the relative sign of 2η and m2

in this equation looks unfamiliar to you, then this is probably due to the fact that in

a course where you first encountered the Klein-Gordon equation the opposite (particle

physicists’) sign convention for the Minkowski metric was used . . . ]

A comment on how to derive this: if one thinks of the ∂α in the action as covariant deriva-

tives, ∂α → ∇α, then the calculation is identical to that in Minkowski space provided

that one remembers that ∇α
√
g = 0. If one sticks with the ordinary partial derivatives,

then upon the usual integration by parts one picks up a term ∼ ∂α(
√
ggαβ∂βφ) which

then evidently leads to the Laplacian in the form (4.49).

The energy-momentum tensor of a Klein-Gordon scalar field in Minkowski space is

SR: Tαβ = ∂αφ∂βφ+ ηαβL = ∂αφ∂βφ− 1
2ηαβ

(
ηµν∂µφ∂νφ+m2φ2

)
(5.6)

normalised so as to give for T00 the positive energy density

T00 = 1
2(φ̇2 + (~∇φ)2 +m2φ2) . (5.7)

This energy-momentum tensor is conserved for φ a solution to the equations of motion,

(
2η −m2

)
φ = 0 ⇒ ∂αTαβ = 0 . (5.8)
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The corresponding energy-momentum tensor in a gravitational field is then evidently

GR: Tαβ = ∂αφ∂βφ+ gαβL = ∂αφ∂βφ− 1
2gαβ

(
gµν∂µφ∂νφ+m2φ2

)
(5.9)

and it is covariantly conserved for φ a solution to the equations of motion in a gravita-

tional background, (
2g −m2

)
φ = 0 ⇒ ∇αTαβ = 0 . (5.10)

Note that we cannot expect to have an ordinary conservation law because there is no

translation invariance in a general gravitational background. We will come back to this

issue below and in section 6. In particular, we cannot even derive the energy-momentum

tensor (5.9) via Noether’s theorem (applied to translations).

We can, however, obtain it in a quite different (and perhaps at this point rather mys-

terious) way, namely by varying the action S[φ, gαβ ] not with respect to φ but with

respect to the metric! Indeed, recalling the formula for the derivative / variation of the

determinant of the metric from section 4.6,

δg = g−1gαβδgαβ = −ggαβδgαβ (5.11)

(the second quality following from δ(gαβg
αβ) = 0), one finds that under gαβ → gαβ +

δgαβ the action varies by

δS[φ, gαβ ] = −1
2

∫ √
gd4x Tαβδg

αβ (5.12)

or

Tαβ = − 2√
g

δS[φ, gαβ ]

δgαβ
. (5.13)

More should (and will) be said about this in due course . . .

5.4 Maxwell Theory in a Gravitational Field

Given the vector potential Aµ, the Maxwell field strength tensor in Special Relativity is

SR: Fµν = ∂µAν − ∂νAµ . (5.14)

Therefore in a general metric space time (gravitational field) we have

GR: Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ . (5.15)

Actually, this is a bit misleading. The field strength tensor (two-form) in any, Abelian or

non-Abelian, gauge theory is always given in terms of the gauge-covariant exterior derivative of

the vector potential (connection), and as such has nothing whatsoever to do with the metric

on space-time. So you should not really regard the first equality in the above equation as the

definition of Fµν , but you should regard the second equality as a proof that Fµν , always defined

by Fµν = ∂µAν − ∂νAµ, is a tensor. The mistake of adopting ∇µAν −∇νAµ as the definition
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of Fµν in a curved space time has led some poor souls to believe, and even claim in published

papers, that in a space time with torsion, for which the second equality does not hold, the

Maxwell field strength tensor is modified by the torsion. This is nonsense.

In Special Relativity, the Maxwell equations read

SR: ∂µF
µν = −Jν

∂[µFνλ] = 0 . (5.16)

Thus in a general gravitational field (curved space time) these equations become

GR: ∇µF
µν = −Jν

∇[µFνλ] = 0 , (5.17)

where now of course all indices are raised and lowered with the metric gµν ,

Fµν = gµλgνρFλρ . (5.18)

Regarding the use of the covariant derivative in the second equation, the same caveat

as above applies.

Using the results derived above, we can rewrite these two equations as

GR: ∂µ(g
1/2Fµν) = −g1/2Jν

∂[µFνλ] = 0 . (5.19)

The electromagnetic force acting on a particle of charge e is given in Special Relativity

by

SR: fµ = eFµν ẋ
ν . (5.20)

Thus in General Relativity it becomes

GR: fµ = egµλFλν ẋ
ν . (5.21)

The Lorentz-invariant action of (vacuum) Maxwell theory is

SR: S[Aα] = −1
4

∫
d4x FµνF

µν (5.22)

GR: S[Aα, gαβ ] = −1
4

∫ √
gd4x FµνF

µν ≡ −1
4

∫ √
gd4x gµλgνρFµνFλρ (5.23)

(and to add sources, one adds
∫ √

gd4x AµJ
µ). By varying this action with respect to

the Aµ one obtains the vacuum Maxwell equations ∇µF
µν = 0,

δ

δAν
S[Aα, gαβ ] = 0 ⇒ ∇µF

µν = 0 . (5.24)
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Instead of just adding a source-term by hand, a more coherent approach (which also

provides the sources with their own dynamics) is to consider a matter action (minimally)

coupled to the Maxwell field,

SM [φ] → SM [φ,Aα] . (5.25)

The combined Maxwell + matter action will then give rise to the Maxwell equations

with a source provided that one defines the current Jα as the variation of the matter

action with respect to the gauge field,

Jα ∼ δSM [φ,Aα]

δAα
. (5.26)

By the same rationale, we should define the source term for the gravitational field by

the variation of the gravitationally minimally coupled matter action with respect to the

metric. But the source term for the gravitational field equation should be the energy-

momentum tensor. We have already seen that this works out correctly in the case of a

scalar field. Let us now see what we get here.

Recall that in the case of Maxwell theory in Minkoswki space-time the canonical Noether

energy-momentum tensor (associated to the translation invariance of the Maxwell ac-

tion)

Θµν = − ∂L

∂(∂µAλ)
∂νAλ + ηµνL = F λ

µ ∂νAλ − 1
4ηµνFλσF

λσ (5.27)

is (of course) conserved but neither symmetric nor gauge-invariant. This can be recti-

fied by adding an identically conserved correction-term and/or by considering Lorentz

transformations as well, not just translations, and taking into account the tensorial

(non-scalar) nature of the vector potential under Lorentz-transformations. Either way

one then finally arrives at the covariant (improved, symmetric and gauge-invariant)

energy-momentum tensor of Maxwell theory, namely

SR: Tµν = FµλF
λ
ν + ηµνL = FµλF

λ
ν − 1

4ηµνFλσF
λσ , (5.28)

normalised so as to give for T00 the positive definite energy density

T00 = 1
2( ~E2 + ~B2) . (5.29)

Therefore according to the minimal couplling description, the energy-momentum tensor

in a gravitational field is

GR: Tµν = FµλF
λ
ν − 1

4gµνFλσF
λσ , (5.30)

where all indices are raised with the inverse metric gµν . The (non-)conservation equation

SR: ∂µT
µν = JµF

µν , (5.31)
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(deriving this requires using both sets of Maxwell equations) becomes the covariant

(non-)conservation law

GR: ∇µT
µν = JµF

µν , (5.32)

Once again we observe the remarkable fact that this energy-momentum tensor can be

obtained by varying the action with respect to the metric,

Tαβ = − 2√
g

δS[Aα, gαβ ]

δgαβ
. (5.33)

This procedure automatically, and in general, gives rise to a symmetric and gauge in-

variant tensor by construction, without the need for “correction terms”, clearly an ap-

pealing feature. We will see later (section 10.3) that it is also automatically covariantly

conserved “on-shell” by virtue of the general covariance of the action.

5.5 On the Energy-Momentum Tensor for Weyl-invariant Actions

Another general feature of the energy-momentum tensor that is readily understood by

adopting the definition

Tαβ = − 2√
g

δSmatter

δgαβ
. (5.34)

is the relation between Weyl invariance and the trace of the energy-momentum tensor.

We consider the situation where the minimally coupled matter action happens to be

invariant under Weyl rescalings, i.e. under rescalings of the metric

gαβ(x) → e2ω(x)gαβ(x) (5.35)

by a positive definite function, or infinitesimally

δωgαβ(x) = 2ω(x)gαβ(x) . (5.36)

Examples of such actions are e.g. the action of a massless scalar field (5.4) in d = 2

(space-time) dimensions

S[φ, gαβ ] = −1
2

∫
d2x

√
ggαβ∂αφ∂βφ (5.37)

and that of Maxwell theory (5.23) in d = 4 dimensions,

S[Aα, gαβ ] = −1
4

∫
d4x

√
ggαβgγδFαγFβδ . (5.38)

Indeed, in that case the metric dependence of the action is precisely such that the

combination of of the determinant
√
g and the inverse metric that appears is invariant

under Weyl rescalings,

gαβ → e2ωgαβ ⇒
{
d = 2

√
ggαβ → √

ggαβ

d = 4
√
ggαβgγδ → √

ggαβgγδ
(5.39)
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This is reflected in the fact that the corresponding energy-momentum tensor is traceless

precisely in these dimensions: from (5.9) and (5.30) one finds

Tαβ = ∂αφ∂βφ− 1
2gαβ (gµν∂µφ∂νφ) ⇒ Tαα = −1

2(d− 2)gµν∂µφ∂νφ

Tαβ = FαλF
λ
β − 1

4gαβFλσF
λσ ⇒ Tαα = −1

4(d− 4)FµνF
µν .

(5.40)

The relation between these two observations / assertions is provided by noting that if

the matter action is invariant under Weyl rescalings one has

0 = δωSmatter = −1
2

∫ √
gddx Tαβ(x)δωg

αβ(x)

=

∫ √
gddx Tαβ(x)g

αβ(x)ω(x) =

∫ √
gddx Tαα(x)ω(x) .

(5.41)

Since this is to be zero for all functions ω(x), this proves

Invariance under Weyl Rescalings ⇒ Tαα = 0 . (5.42)

5.6 Conserved Quantities from Covariantly Conserved Currents

In Special Relativity a conserved current Jµ is characterised by the vanishing of its

divergence, i.e. by ∂µJ
µ = 0. It leads to a conserved charge Q by integrating Jµ over

a spacelike hypersurface, say the one described by t = t0. This is usually written as

something like

Q =

∫

t=t0

JµdSµ , (5.43)

where dSµ is the induced volume element on the hypersurface. That Q is conserved,

i.e. independent of t0, is a consequence of

Q(t1) −Q(t0) =

∫

V
d4x ∂µJ

µ = 0 , (5.44)

where V is the four-volume R
3 × [t0, t1]. This holds provided that J vanishes at spatial

infinity.

Now in General Relativity, the conservation law will be replaced by the covariant conser-

vation law ∇µJ
µ = 0, and one may wonder if this also leads to some conserved charges

in the ordinary sense. The answer is yes because, recalling the formula for the covariant

divergence of a vector,

∇µJ
µ = g−1/2∂µ(g

1/2Jµ) , (5.45)

we see that

∇µJ
µ = 0 ⇔ ∂µ(g

1/2Jµ) = 0 , (5.46)

so that g1/2Jµ is a conserved current in the ordinary sense. We then obtain conserved

quantities in the ordinary sense by integrating Jµ over a spacelike hypersurface Σ. Using
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the generalised Gauss’ theorem appropriate for metric space-times, one can see that Q

is invariant under deformations of Σ.

In order to write down more precise equations for the charges in this case, we would

have to understand how a metric on space-time induces a metric (and hence volume

element) on a spacelike hypersurface. This would require developing a certain amount

of formalism, useful for certain purposes in Cosmology and for developing a canonical

formalism for General Relativity. But as this lies somewhat outside of the things we

will do in this course, I will skip this. Suffice it to say here that the first step would be

the introduction of a normalised normal vector nµ to the hypersurface Σ, nµnµ = −1

and to consider the object hµν = gµν + nµnν . As hµνn
ν = 0 while hµνX

ν = gµνX
ν for

any vector Xµ normal to nµ, hµν induces a metric and volume element on Σ.

The factor g1/2 apearing in the current conservation law can be understood physically.

To see what it means, split Jµ into its space-time direction uµ, with uµuµ = −1, and

its magnitude ρ as

Jµ = ρuµ . (5.47)

This defines the average four-velocity of the conserved quantity represented by Jµ and

its density ρmeasured by an observer moving at that average velocity (rest mass density,

charge density, number density, . . . ). Since uµ is a vector, in order for Jµ to be a vector,

ρ has to be a scalar. Therefore this density is defined as per unit proper volume. The

factor of g1/2 transforms this into density per coordinate volume and this quantity is

conserved (in a comoving coordinate system where J0 = ρ, J i = 0).

We will come back to this in the context of cosmology later on in this course (see

section 16) but for now just think of the following picture (Figure 20): take a balloon,

draw lots of dots on it at random, representing particles or galaxies. Next choose some

coordinate system on the balloon and draw the coordinate grid on it. Now inflate

or deflate the balloon. This represents a time dependent metric, roughly of the form

ds2 = r2(t)(dθ2 + sin2 θdφ2). You see that the number of dots per coordinate volume

element does not change, whereas the number of dots per unit proper volume will.

5.7 Conserved Quantities from Covariantly Conserved Tensors?

In Special Relativity, if T µν is the energy-momentum tensor of a physical system, it

satisfies an equation of the form

∂µT
µν = Gν , (5.48)

where Gµ represents the density of the external forces acting on the system. In par-

ticular, if there are no external forces, the divergence of the energy-momentum tensor

is zero. For example, in the case of Maxwell theory and a current corresponding to a
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charged particle we have

Gν = JµF
µν = −F νµJµ = −eF νµẋµ , (5.49)

which is indeed the relevant external (Lorentz) force density.

Now, in General Relativity we will instead have

∇µT
µν = Gν ⇔ g−1/2∂µ(g

1/2T µν) = Gν − ΓνµλT
µλ . (5.50)

Thus the second term on the right hand side represents the gravitational force density.

As expected, it depends on the system on which it acts via the energy momentum tensor.

And, as expected, this contribution is not generally covariant.

Now, given a symmetric covariantly conserved energy-momentum tensor, in analogy

with Special Relativity, one might like to define quantities like energy and momentum,

Pµ, and angular momentum Jµν , by integrals of T µ0 or xµT ν0 − xνT µ0 over spacelike

hypersurfaces. However, these quantities are rather obviously not covariant, and nor are

they conserved. This should perhaps not be too surprising because in Minkowski space

these quantities are preserved as a consequence of Poincaré invariance, i.e. because of

the symmetries (isometries) of the Minkowski metric.

As a generic metric will have no such isometries, we do not expect to find associated

conserved quantities in general. However, if there are symmetries then one can indeed

define conserved quantities (think of Noether’s theorem), one for each symmetry gen-

erator. In order to implement this we need to understand how to define and detect

isometries of the metric. For this we need the concepts of Lie derivatives and Killing

vectors.

Alternatively, one might try to construct a covariant current-like object by contracting

the energy-momentum tensor not with the coordinates but with a vector field V λ, along

the lines of

JµV = T µλV
λ . (5.51)

This is clearly a vector, but is it conserved? Calculating its covariant divergence, and

using the fact that T µν is symmetric and conserved, one finds

∇µJ
µ
V = 1

2T
µν(∇µVν + ∇νVµ) . (5.52)

Thus we would have a conserved current (and associated conserved charge by the previ-

ous section) if the vector field V λ were such that it satisfies ∇µVν +∇νVµ = 0. The link

between this observation and the one in the preceding paragraph regarding symmetries

is that, first of all, this is precisely the condition we found in (2.63), as reformulated in

(4.58), to generate a symmetry of the metric leading to a conserved charge for geodesics.

More generally, as we will discuss in the next section, vector fields satsifying the equation

∇µVν +∇νVµ = 0 are indeed in one-to-one correspondence with infinitesimal generators

of continuous symmetries of a metric (isometries), giving a pleasing and coherent overall

picture of symmetries and conservation laws in a gravitational field.
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6 The Lie Derivative, Symmetries and Killing Vectors

6.1 Symmetries of a Metric (Isometries): Preliminary Remarks

Before trying to figure out how to detect symmetries of a metric, or so-called isometries,

let us decide what we mean by symmetries of a metric. For example, we would say that

the Minkowski metric has the Poincaré group as a group of symmetries, because the

corresponding coordinate transformations leave the metric invariant.

Likewise, we would say that the standard metrics on the two- or three-sphere have

rotational symmetries because they are invariant under rotations of the sphere. We can

look at this in one of two ways: either as an active transformation, in which we rotate

the sphere and note that nothing changes, or as a passive transformation, in which we

do not move the sphere, all the points remain fixed, and we just rotate the coordinate

system. So this is tantamount to a relabelling of the points. From the latter (passive)

point of view, the symmetry is again understood as an invariance of the metric under a

particular family of coordinate transformations.

Thus consider a metric gµν(x) in a coordinate system {xµ} and a change of coordinates

xµ → yµ(xν) (for the purposes of this and the following section it will be convenient not

to label the two coordinate systems by different sets of indices). Of course, under such

a coordinate transformation we get a new metric g′µν , with

g′µν(y(x)) =
∂xρ

∂yµ
∂xλ

∂yν
gρλ(x) . (6.1)

Since here we do not distinguish coordinate indices associated to different coordinate

systems, we now momentarily put primes on the objects themselves in order to keep

track of what we are talking about. However, this by itself has nothing to do with

possible symmetries of the metric.

Thinking actively, in order to detect symmetries, we should e.g. compare the geometry,

given by the line-element ds2 = gµνdx
µdxν , at two different points x and y related by

yµ(x). Thus we are led to consider the difference

gµν(y)dy
µdyν − gµν(x)dx

µdxν . (6.2)

Using the invariance of the line-element under coordinate transformations, i.e. the usual

tensorial transformation behaviour of the components of the metric, we see that we can

also write this as the difference

(gµν(y) − g′µν(y))dy
µdyν . (6.3)

Thus we deduce that what we mean by a symmetry, i.e. invariance of the metric under

a coordinate transformation, is the statement

g′µν(y) = gµν(y) . (6.4)
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From the passive point of view, in which a coordinate transformation represents a rela-

belling of the points of the space, this equation compares the new metric at a point P ′

(with coordinates yµ) with the old metric at the point P which has the same values of

the old coordinates as the point P ′ has in the new coordinate system, yµ(P ′) = xµ(P ).

The above equality then states that the new metric at the point P ′ has the same

functional dependence on the new coordinates as the old metric on the old coordinates

at the point P . Thus a neighbourhood of P ′ in the new coordinates looks identical to

a neighbourhood of P in the old coordinates, and they can be mapped into each other

isometrically, i.e. such that all the metric properties, like distances, are preserved. Thus

either actively or passively one is led to the above condition.

Note that to detect a continuous symmetry in this way, we only need to consider infinites-

imal coordinate transformations. In that case, the above amounts to the statement that

metrically the space time looks the same when one moves infinitesimally in the direction

given by the coordinate transformation.

6.2 The Lie Derivative for Scalars

We now want to translate the above discussion into a condition for an infinitesimal

coordinate transformation

xµ → yµ(x) = xµ + ǫV µ(x) (6.5)

to generate a symmetry of the metric. Here you can and should think of V µ as a

vector field because, even though coordinates themselves of course do not transform like

vectors, their infinitesimal variations δxµ do,

zµ
′

= zµ
′

(x) → δzµ
′

=
∂zµ

′

∂xµ
δxµ (6.6)

and we think of δxµ as ǫV µ.

In fact, we will do something slightly more general than just trying to detect symmetries

of the metric. After all, we can also speak of functions or vector fields with symmetries,

and this can be extended to arbitrary tensor fields (although that may be harder to

visualize). So, for a general tensor field T we will want to compare T ′(y(x)) with T (y(x))

- this is of course equivalent to, and only technically a bit easier than, comparing T ′(x)

with T (x).

As usual, we start the discussion with scalars. In that case, we want to compare φ(y(x))

with φ′(y(x)) = φ(x). We find

φ(y(x)) − φ′(y(x)) = φ(x+ ǫV ) − φ(x) = ǫV µ∂µφ+ O(ǫ2) . (6.7)

We now define the Lie derivative of φ along the vector field V µ to be

LV φ := lim
ǫ→0

φ(y(x)) − φ′(y(x))

ǫ
. (6.8)
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Evaluating this, we find

LV φ = V µ∂µφ . (6.9)

Thus for a scalar, the Lie derivative is just the ordinary directional derivative, and this

is as it should be since saying that a function has a certain symmetry amounts to the

assertion that its derivative in a particular direction vanishes.

6.3 The Lie Derivative for Vector Fields

We now follow the same procedure for a vector field W µ. We will need the matrix

(∂yµ/∂xν) and its inverse for the above infinitesimal coordinate transformation. We

have
∂yµ

∂xν
= δµν + ǫ∂νV

µ , (6.10)

and
∂xµ

∂yν
= δµν − ǫ∂νV

µ + O(ǫ2) . (6.11)

Thus we have

W ′µ(y(x)) =
∂yµ

∂xν
W ν(x)

= W µ(x) + ǫW ν(x)∂νV
µ(x) , (6.12)

and

W µ(y(x)) = W µ(x) + ǫV ν∂νW
µ(x) + O(ǫ2) . (6.13)

Hence, defining the Lie derivative LVW of W by V by

LVW
µ := lim

ǫ→0

W µ(y(x)) −W ′µ(y(x))

ǫ
, (6.14)

we find

LVW
µ = V ν∂νW

µ −W ν∂νV
µ . (6.15)

There are several important things to note about this expression:

1. The result looks non-covariant, i.e. non-tensorial. But as a difference of two vectors

at the same point (recall the limit ǫ→ 0) the result should again be a vector. This

is indeed the case. One way to make this manifest is to rewrite (6.15) in terms of

covariant derivatives, as

LVW
µ = V ν∇νW

µ −W ν∇νV
µ

= ∇VW
µ −∇WV

µ . (6.16)

This shows that LWW
µ is again a vector field. Note, however, that the Lie

derivative, in contrast to the covariant derivative, is defined without reference to

any metric.
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2. There is an alternative, and perhaps more intuitive, derivation of the above ex-

pression (6.15) for the Lie derivative of a vector field along a vector field, which

makes both its tensorial character and its interpretation manifest (and which also

generalises to other tensor fields; in fact we had already applied it to the metric

in section 2.5 to deduce (2.62)).

Namely, let us assume that we are initially in a coordinate system {yµ′} adapted

to V in the sense that V = ∂/∂ya for some particular a, i.e. V µ′ = δµ
′

a (so that

we are locally choosing the flow-lines of V as one of the coordinate lines). In

this coordinate system we would naturally define the change of a vector field W µ′

along V as the partial derivative of W along ya,

LVW
µ′ :=

∂

∂ya
W µ′ . (6.17)

We now consider an arbitrary coordinate transformation xα = xα(yµ
′

), and require

that LVW transforms as a vector under coordinate transformations. This will then

give us the expression for LVW in an arbitrary coordinate system:

∂

∂ya
W µ′ =

∂xα

∂ya
∂

∂xα

(
∂yµ

′

∂xβ
W β

)

!
=

∂yµ
′

∂xα
(LVW )α . (6.18)

Disentangling this, using V α = ∂xα/∂ya and

∂xα

∂ya
∂2yµ

′

∂xα∂xβ
=
∂xα

∂ya
∂

∂xβ
∂yµ

′

∂xα
= −∂V

α

∂xβ
∂yµ

′

∂xα
, (6.19)

one recovers the definition (6.15).

3. Note that (6.15) is antisymmetric in V and W . Hence it defines a commutator

[V,W ] on the space of vector fields,

[V,W ]µ := LVW
µ = −LWV µ . (6.20)

This is actually a Lie bracket, i.e. it satisfies the Jacobi identity

[V, [W,X]]µ + [X, [V,W ]]µ + [W, [X,V ]]µ = 0 . (6.21)

This can also be rephrased as the statement that the Lie derivative is also a

derivation of the Lie bracket, i.e. that one has

LV [W,X]µ = [LVW,X]µ + [W,LVX]µ . (6.22)

4. I want to reiterate at this point that it is extremely useful to think of vector fields

as first order linear differential operators, via V µ → V = V µ∂µ. In this case, the
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Lie bracket [V,W ] is simply the ordinary commutator of differential operators,

[V,W ] = [V µ∂µ,W
ν∂ν ]

= V µ(∂µW
ν)∂ν + V µW ν∂µ∂ν −W ν(∂νV

µ)∂µ −W νV µ∂ν∂ν

= (V ν∂νW
µ −W ν∂νV

µ)∂µ

= (LVW )µ∂µ = [V,W ]µ∂µ . (6.23)

From this point of view, the Jacobi identity is obvious.

5. Having equipped the space of vector fields with a Lie algebra structure, in fact

with the structure of an infinite-dimensional Lie algebra, it is fair to ask ‘the Lie

algebra of what group?’. Well, we have seen above that we can think of vector

fields as infinitesimal generators of coordinate transformations. Hence, formally at

least, the Lie algebra of vector fields is the Lie algebra of the group of coordinate

transformations (passive point of view) or diffeomorphisms (active point of view).

6.4 The Lie Derivative for other Tensor Fields

To extend the definition of the Lie derivative to other tensors, we can proceed in one of

two ways. We can either extend the above procedure to other tensor fields by defining

LV T
···

··· := lim
ǫ→0

T ···
···(y(x)) − T ′···

··· (y(x))

ǫ
. (6.24)

Or we can extend it to other tensors by proceeding as in the case of the covariant

derivative, i.e. by demanding the Leibniz rule. In either case, the result can be rewritten

in manifestly tensorial form in terms of covariant derivatives.

The result is that the Lie derivative of a (p, q)-tensor T is, like the covariant derivative,

the sum of three kinds of terms: the directional covariant derivative of T along V , p

terms with a minus sign, involving the covariant derivative of V contracted with each

of the upper indices, and q terms with a plus sign, involving the convariant derivative

of V contracted with each of the lower indices (note that the plus and minus signs are

interchanged with respect to the covariant derivative). Thus, e.g., the Lie derivative of

a (1,2)-tensor is

LV T
µ
νλ = V ρ∇ρT

µ
νλ − T ρνλ∇ρV

µ + T µρλ∇νV
ρ + T µνρ∇λV

ρ . (6.25)

The fact that the Lie derivative provides a representation of the Lie algebra of vector

fields by first-order differential operators on the space of (p, q)-tensors is expressed by

the identity

[LV , LW ] = L[V,W ] . (6.26)
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6.5 The Lie Derivative of the Metric and Killing Vectors

The above general formula becomes particularly simple for the metric tensor gµν . The

first term is not there (because the metric is covariantly constant), so the Lie derivative

is the sum of two terms (with plus signs) involving the covariant derivative of V ,

LV gµν = gλν∇µV
λ + gµλ∇νV

λ . (6.27)

Lowering the index of V with the metric, this can be written more succinctly as

LV gµν = ∇µVν + ∇νVµ . (6.28)

We are now ready to return to our discussion of isometries (symmetries of the metric).

Evidently, an infinitesimal coordinate transformation is a symmetry of the metric if

LV gµν = 0,

V generates an isometry ⇔ ∇µVν + ∇νVµ = 0 . (6.29)

Vector fields V satisfying this equation are called Killing vectors - not because they kill

the metric but after the 19th century mathematician W. Killing.

An alternative way of writing the Killing equation, which is not manifestly covariant

but which makes it manifest that only derivatives of the metric in the V -direction (and

thus only the corresponding Christoffel symbols) enter, is

∇µVν + ∇νVµ = 0 ⇔ V λ∂λgµν + ∂µV
λgλν + ∂νV

λgµλ = 0 . (6.30)

This is precisely the condition (2.63) we had encountered first in our discussion of first

integrals of motion for the geodesic equation, and which we had already rewritten in

terms of covariant derivatives, as in (6.28) above, in (4.58).

Remarks:

1. Since they are associated with symmetries of space time, and since symmetries

are always of fundamental importance in physics, Killing vectors will play an

important role in the following. Our most immediate concern will be with the

conserved quantities associated with Killing vectors. We will return to a more

detailed discussion of Killing vectors and symmetric space times in the context

of Cosmology later on. For now, let us just note that by virtue of (6.26) Killing

vectors form a Lie algebra, i.e. if V and W are Killing vectors, then also [V,W ] is

a Killing vector,

LV gµν = LW gµν = 0 ⇒ L[V,W ]gµν = 0 . (6.31)

Indeed one has

L[V,W ]gµν = LV LW gµν − LWLV gµν = 0 . (6.32)

This algebra is (a subalgebra of) the Lie algebra of the isometry group.
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2. For example, the collection of all Killing vectors of the Minkowski metric generates

the Lie algebra of the Poincaré group. Indeed, for the Minkoski space-time in

inertial (Cartesian) coordinates, i.e. with the constant standard metric ηαβ, the

Killing condition simply becomes

∂αVβ + ∂βVα = 0 , (6.33)

which is solved by

V α = ωαβ x
β + ǫα (6.34)

where the ǫα are constant parameters and the constant matrices ωαβ satisfy ωαβ =

−ωβα. These are precisely the infinitesimal Lorentz transformations and transla-

tions of the Poincaré algebra.

3. Another simple example is provided by the two-sphere: as mentioned before, in

some obvious sense the standard metric on the two-sphere is rotationally invariant.

In particular, with our new terminology we would expect the vector field ∂φ, i.e.

the vector field with components V φ = 1, V θ = 0 to be Killing. Let us check

this. With the metric dθ2 +sin2 θdφ2, the corresponding covector Vµ, obtained by

lowering the indices of the vector field V µ, are

Vθ = 0 , Vφ = sin2 θ . (6.35)

The Killing condition breaks up into three equations, and we verify

∇θVθ = ∂θVθ − ΓµθθVµ

= −Γφθθ sin2 θ = 0

∇θVφ + ∇φVθ = ∂θVφ − ΓµθφVµ + ∂φVθ − ΓµθφVµ

= 2 sin θ cos θ − 2 cot θ sin2 θ = 0

∇φVφ = ∂φVφ + ΓµφφVµ = 0 . (6.36)

Alternatively, using the non-covariant form (6.30) of the Killing equation, one

finds, since V φ = 1, V θ = 0 are constant, that the Killing equation reduces to

∂φgµν = 0 , (6.37)

which is obviously satisfied. This is clearly a simpler and more efficient argument.

4. In general, if the components of the metric are all independent of a particular

coordinate, say y, then by the above argument V = ∂y is a Killing vector,

∂ygµν = 0 ∀ µ, ν ⇒ V = ∂y is a Killing Vector (6.38)

Such a coordinate system, in which one of the coordinate lines agrees with the

integral curves of the Killing vector, is said to be adapted to the Killing vector

97



(or isometry) in question. As we did in section 2.5, one can also take the above

equations as the starting point for what one means by a symmetry of the metric

(isometry) and then simply transform it to an arbitrary coordinate system by

requiring that it transforms as a (0, 2)-tensor. Then one arrives at the Killing

condition in the form (6.30).

6.6 Killing Vectors and Conserved Quantities

We are used to the fact that symmetries lead to conserved quantities (Noether’s theo-

rem). For example, in classical mechanics, the angular momentum of a particle moving

in a rotationally symmetric gravitational field is conserved. In the present context, the

concept of ‘symmetries of a gravitational field’ is replaced by ‘symmetries of the met-

ric’, and we therefore expect conserved charges associated with the presence of Killing

vectors. Here are the two most important classes of examples of this phenomenon:

1. Killing Vectors, Geodesics and Conserved Quantities

Let Kµ be a Killing vector field, and xµ(τ) be a geodesic. Then the quantity Kµẋ
µ

is constant along the geodesic. Indeed,

d

dτ
(Kµẋ

µ) = (
D

Dτ
Kµ)ẋ

µ +Kµ
D

Dτ
ẋµ

= ∇νKµẋ
ν ẋµ + 0

= 1
2(∇νKµ + ∇µKν)ẋ

µẋν = 0 . (6.39)

Note that this is precisely the conserved quantity QV (2.64) with V → K deduced

from Noether’s theorem and the variational principle for geodesics in section 2.5

2. Conserved Currents from the Energy-Momentum Tensor

Let Kµ be a Killing vector field, and T µν the covariantly conserved symmetric

energy-momentum tensor, ∇µT
µν = 0. Then Jµ = T µνKν is a covariantly con-

served current. Indeed,

∇µJ
µ = (∇µT

µν)Kν + T µν∇µKν

= 0 + 1
2T

µν(∇µKν + ∇νKµ) = 0 . (6.40)

Hence, as we now have a conserved current, we can associate with it a conserved

charge in the way discussed above.

Another situation of interest occurs when one has a theory invariant under Weyl rescal-

ings and thus a traceless energy-momentum tensor (section 5.5). In that case one can

associate conserved currents not only to Killing vectors fields but also to conformal

Killing vectors Cµ, satisfying

∇µCν + ∇νCµ = 2ω(x)gµν (6.41)
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for some function ω(x). Such conformal Killing vectors generate coordinate transfor-

mations that leave the metric invariant up to an overall (Weyl) rescaling. If the theory

is invariant under such Weyl rescalings, then the energy-momntum tensor is traceless

and there should also be a corresponding conserved current. Indeed, we have

2’ Let Cµ be a conformal Killing vector field, and T µν a covariantly conserved sym-

metric and traceless energy-momentum tensor, ∇µT
µν = T µνgµν = 0. Then

Jµ = T µνCν is a covariantly conserved current. Indeed,

∇µJ
µ = (∇µT

µν)Cν + T µν∇µCν

= 0 + 1
2T

µν(∇µCν + ∇νCµ) = ω(x)T µνgµν = 0 . (6.42)
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7 Curvature I: The Riemann Curvature Tensor

7.1 Curvature: Preliminary Remarks

We now come to one of the most important concepts of General Relativity and Rie-

mannian Geometry, that of curvature and how to describe it in tensorial terms. Among

other things, this will finally allow us to decide unambiguously if a given metric is just

the (flat) Minkowski metric in disguise or the metric of a genuinely curved space. It

will also lead us fairly directly to the Einstein equations, i.e. to the field equations for

the gravitational field.

Recall that the equations that describe the behaviour of particles and fields in a gravi-

tational field involve the metric and the Christoffel symbols determined by the metric.

Thus the equations for the gravitational field should be generally covariant (tensorial)

differential equations for the metric.

But at first, here we seem to face a dilemma. How can we write down covariant differ-

ential equations for the metric when the covariant derivative of the metric is identically

zero? Having come to this point, Einstein himself reached an impasse and required the

help of his mathematician friend Marcel Grossmann whom he had asked to investigate

if there were any tensors that could be built from the second derivatives of the metric.

Grossmann soon found that this problem had indeed been addressed and solved in the

mathematics literature, in particular by Riemann (generalising work of Gauss on curved

surfaces), Ricci and Levi-Civita. It was shown by them that there are indeed non-trivial

tensors that can be constructed from (ordinary) derivatives of the metric. These can

then be used to write down covariant differential equations for the metric.

The most important among these are the Riemann curvature tensor and its various

contractions. In fact, it is known that these are the only tensors that can be constructed

from the metric and its first and second derivatives, and they will therefore play a central

role in all that follows.

7.2 The Riemann Curvature Tensor from the Commutator of Covariant

Derivatives

Technically the most straightforward way of introducing the Riemann curvature tensor

is via the commutator of covariant derivatives. As this is not geometrically the most

intuitive way of introducing the concept of curvature, we will then, once we have de-

fined it and studied its most important algebraic properties, study to which extent the

curvature tensor reflects the geometric properties of space time.

As mentioned before, second covariant derivatives do not commute on (p, q)-tensors

unless p = q = 0. However, the fact that they do commute on scalars has the pleasant
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consequence that e.g. the commutator of covariant derivatives acting on a vector field

V µ does not involve any derivatives of V µ. In fact, I will first show, without actually

calculating the commutator, that

[∇µ,∇ν ]φV
λ = φ[∇µ,∇ν ]V

λ (7.1)

for any scalar field φ. This implies that [∇µ,∇ν ]V
λ cannot depend on derivatives of V

because if it did it would also have to depend on derivatives of φ. Hence, the commutator

can be expressed purely algebraically in terms of V . As the dependence on V is clearly

linear, there must therefore be an object Rλσµν such that

[∇µ,∇ν ]V
λ = RλσµνV

σ . (7.2)

This can of course also be verified by a direct calculation, and we will come back to this

below. For now let us just note that, since the left hand side of this equation is clearly

a tensor for any V , the quotient theorem implies that Rλσµν has to be a tensor. It is the

famous Riemann-Christoffel Curvature Tensor.

Let us first verify (7.1). We have

∇µ∇νφV
λ = (∇µ∇νφ)V λ + (∇νφ)(∇µV

λ) + (∇µφ)(∇νV
λ) + φ∇µ∇νV

λ . (7.3)

Thus, upon taking the commutator the second and third terms drop out and we are left

with

[∇µ,∇ν ]φV
λ = ([∇µ,∇ν ]φ)V λ + φ[∇µ,∇ν ]V

λ

= φ[∇µ,∇ν ]V
λ , (7.4)

which is what we wanted to establish.

By explicitly calculating the commutator, one can confirm the structure displayed in

(7.2). This explicit calculation shows that the Riemann tensor (for short) is given by

Rλσµν = ∂µΓ
λ
σν − ∂νΓ

λ
σµ + ΓλµρΓ

ρ
νσ − ΓλνρΓ

ρ
µσ (7.5)

Note how useful the quotient theorem is in this case. It would be quite unpleasant to

have to verify the tensorial nature of this expression by explicitly checking its behaviour

under coordinate transformations.

Note also that this tensor is clearly zero for the Minkowski metric written in Cartesian

coordinates. Hence it is also zero for the Minkowski metric written in any other coor-

dinate system. We will prove the converse, that vanishing of the Riemann curvature

tensor implies that the metric is equivalent to the Minkowski metric, below.
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It is straightforward to extend the above to an action of the commutator [∇µ,∇ν ] on

arbitrary tensors. For covectors we have, since we can raise and lower the indices with

the metric with impunity,

[∇µ,∇ν ]Vρ = gρλ[∇µ,∇ν ]V
λ

= gρλR
λ
σµνV

σ

= RρσµνV
σ

= R σ
ρ µνVσ . (7.6)

We will see later that the Riemann tensor is antisymmetric in its first two indices. Hence

we can also write

[∇µ,∇ν ]Vρ = −RσρµνVσ . (7.7)

The extension to arbitrary (p, q)-tensors now follows the usual pattern, with one Rie-

mann curvature tensor, contracted as for vectors, appearing for each of the p upper

indices, and one Riemann curvature tensor, contracted as for covectors, for each of the

q lower indices. Thus, e.g. for a (1,1)-tensor Aλρ one would find

[∇µ,∇ν ]A
λ
ρ = RλσµνA

σ
ρ −RσρµνA

λ
σ . (7.8)

I will give two other versions of the fundamental formula (7.2) which are occasionally

useful and used.

1. Instead of looking at the commutator [∇µ,∇ν ] of two derivatives in the coordinate

directions xµ and xν , we can look at the commutator [∇X ,∇Y ] of two directional

covariant derivatives. Evidently, in calculating this commutator one will pick up

new terms involving ∇XY
µ −∇YX

µ. Comparing with (6.16), we see that this is

just [X,Y ]µ. The correct formula for the curvature tensor in this case is

([∇X ,∇Y ] −∇[X,Y ])V
λ = RλσµνX

µY νV σ . (7.9)

Note that, in this sense, the curvature measures the failure of the covariant deriva-

tive to provide a representation of the Lie algebra of vector fields.

2. Secondly, one can consider a net of curves xµ(σ, τ) parmetrizing, say, a two-

dimensional surface, and look at the commutators of the covariant derivatives

along the σ- and τ -curves. The formula one obtains in this case (it can be ob-

tained from (7.9) by noting that X and Y commute in this case) is

(
D2

DσDτ
− D2

DτDσ

)
V λ = Rλσµν

dxµ

dσ

dxν

dτ
V σ . (7.10)
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7.3 Symmetries and Algebraic Properties of the Riemann Tensor

A priori, the Riemann tensor has 256 = 44 components in 4 dimensions. However,

because of a large number of symmetries, the actual number of independent components

is much smaller.

In general, to read off all the symmetries from the formula (7.5) is difficult. One way

to simplify things is to look at the Riemann curvature tensor at the origin x0 of a

Riemann normal coordinate system (or some other inertial coordinate system). In that

case, all the first derivatives of the metric disappear and only the first two terms of (7.5)

contribute. One finds

Rαβγδ(x0) = gαλ(∂γΓ
λ
βδ − ∂δΓ

λ
βγ)(x0)

= (∂γΓαβδ − ∂δΓαβγ)(x0)

= 1
2(gαδ ,βγ +gβγ ,αδ −gαγ ,βδ −gβδ,αγ )(x0) . (7.11)

In principle, this expression is sufficiently simple to allow one to read off all the symme-

tries of the Riemann tensor. However, it is more insightful to derive these symmetries

in a different way, one which will also make clear why the Riemann tensor has these

symmetries.

1. Rαβγδ = −Rαβδγ
This is obviously true from the definition or by construction.

2. Rαβγδ = −Rβαγδ
This is a consequence of the fact that the metric is covariantly constant. In fact,

we can calculate

0 = [∇γ ,∇δ]gαβ

= R λ
α γδgλβ +R λ

β γδgαλ

= (Rαβγδ +Rβαγδ) . (7.12)

3. Rα[βγδ] = 0 ⇔ Rαβγδ +Rαδβγ +Rαγδβ = 0

This Bianchi identity is a consequence of the fact that there is no torsion. In fact,

applying [∇γ ,∇δ] to the covector ∇βφ, φ a scalar, one has

∇[γ∇δ∇β]φ = 0 ⇒ Rλ[βγδ]∇λφ = 0 . (7.13)

As this has to be true for all scalars φ, this implies Rα[βγδ] = 0 (to see this

you could e.g. choose the (locally defined) coordinate functions φ(x) = xµ with

∇λφ = δµλ).
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4. Rαβγδ = Rγδαβ

This identity, stating that the Riemann tensor is symmetric in its two pairs of

indices, is not an independent symmetry but can be deduced from the three other

symmetries by some not particularly interesting algebraic manipulations.

We can now count how many independent components the Riemann tensor really has.

(1) implies that the second pair of indices can only take N = (4×3)/2 = 6 independent

values. (2) implies the same for the first pair of indices. (4) thus says that the Riemann

curvature tensor behaves like a symmetric (6×6) matrix and therefore has (6×7)/2 = 21

components. We now come to the remaining condition (3): if two of the indices in (3)

are equal, (3) is equivalent to (4) and (4) we have already taken into account. With

all indices unequal, (3) then provides one and only one more additional constraint. We

conclude that the total number of independent components is 20.

Remarks:

1. Note that this agrees precisely with our previous counting of how many of the

second derivatives of the metric cannot be set to zero by a coordinate transforma-

tion: the second derivative of the metric has 100 independent components, to be

compared with the 4× (4×5×6)/(2×3) = 80 components of the third derivatives

of the coordinates. This also leaves 20 components. We thus see very explicitly

that the Riemann curvature tensor contains all the coordinate independent infor-

mation about the geometry up to second derivatives of the metric. In fact, it can

be shown that in a Riemann normal coordinate system one has

gµν(x) = ηµν + 0 + 1
3Rµλσν(x0)(x− x0)

λ(x− x0)
σ + O((x− x0)

3) . (7.14)

2. Just for the record, I note here that in general dimension n the Riemann tensor

has n2(n2 − 1)/12 independent components. This number arises as

n2(n2 − 1)

12
=

N(N + 1)

2
−
(
n

4

)

N =
n(n− 1)

2
(7.15)

and describes (as above) the number of independent components of a symmetric

(N×N)-matrix, now subject to
(n
4

)
conditions which arise from all the possibilities

of choosing 4 out of n possible distinct values for the indices in (3). Just as for

n = 4, this number of components of the Riemann tensor coincides with the

number of second derivatives of the metric minus the number of independent

components of the third derivatives of the coordinates,

n(n+ 1)

2
× n(n+ 1)

2
− n× n(n+ 1)(n + 2)

2 × 3
=
n2(n2 − 1)

12
. (7.16)
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For n = 2 this formula predicts one independent component, and this is as it

should be. Rather obviously the only independent non-vanishing component of

the Riemann tensor in this case is R1212.

Finally, a word of warning: there are a large number of sign conventions involved

in the definition of the Riemann tensor (and its contractions we will discuss below),

so whenever reading a book or article, in particular when you want to use results or

equations presented there, make sure what conventions are being used and either adopt

those or translate the results into some other convention. As a check: the conventions

used here are such that Rφθφθ as well as the curvature scalar (to be introduced below)

are positive for the standard metric on the two-sphere.

7.4 The Ricci Tensor and the Ricci Scalar

The Riemann tensor, as we have seen, is a four-index tensor. For many purposes this

is not the most useful object. But we can create new tensors by contractions of the

Riemann tensor. Due to the symmetries of the Riemann tensor, there is essentially only

one possibility, namely the Ricci tensor

Rµν := Rλµλν = gλσRσµλν . (7.17)

It follows from the symmetries of the Riemann tensor that Rµν is symmetric. Indeed

Rνµ = gλσRσνλµ = gλσRλµσν = Rσµσν = Rµν . (7.18)

Thus, for n = 4, the Ricci tensor has 10 independent components, for n = 3 it has 6,

while for n = 2 there is only 1 because there is only one independent component of the

Riemann curvature tensor to start off with.

There is one more contraction we can perform, namely on the Ricci tensor itself, to

obtain what is called the Ricci scalar or curvature scalar

R := gµνRµν . (7.19)

One might have thought that in four dimensions there is another way of constructing a

scalar, by contracting the Riemann tensor with the Levi-Civita tensor, but

ǫµνρσRµνρσ = 0 (7.20)

because of the Bianchi identity.

Note that for n = 2 the Riemann curvature tensor has as many independent components

as the Ricci scalar, namely one, and that in three dimensions the Ricci tensor has as

many components as the Riemann tensor, whereas in four dimensions there are strictly

less components of the Ricci tensor than of the Riemann tensor. This has profound

implications for the dynamics of gravity in these dimensions. In fact, we will see that it

is only in dimensions n > 3 that gravity becomes truly dynamical, where empty space

can be curved, where gravitational waves can exist etc.
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7.5 An Example: The Curvature Tensor of the Two-Sphere

To see how all of this can be done in practice, let us work out the example of the

two-sphere of unit radius. We already know the Christoffel symbols,

Γφφθ = cot θ , Γθφφ = − sin θ cos θ , (7.21)

and we know that the Riemann curvature tensor has only one independent component.

Let us therefore work out Rθφθφ. From the definition we find

Rθφθφ = ∂θΓ
θ
φφ − ∂φΓ

θ
θφ + ΓθθαΓαφφ − ΓθφαΓ

α
θφ . (7.22)

The second and third terms are manifestly zero, and we are left with

Rθφθφ = ∂θ(− sin θ cos θ) + sin θ cos θ cot θ = sin2 θ . (7.23)

Thus we have

Rθφθφ = Rθφθφ = sin2 θ

Rφθφθ = 1 . (7.24)

Therefore the Ricci tensor Rµν has the components

Rθθ = 1

Rθφ = 0

Rφφ = sin2 θ . (7.25)

These equations can succinctly be written as

Rµν = gµν , (7.26)

sohwing that the standard metric on the two-sphere is what we will later call an Einstein

metric. The Ricci scalar is

R = gθθRθθ + gφφRφφ

= 1 +
1

sin2 θ
sin2 θ

= 2 . (7.27)

In particular, we have here our first concrete example of a space with non-trivial, in fact

positive, curvature.

Question: what is the curvature scalar of a sphere of radius a?

Rather than redoing the calculation in that case, let us observe first of all that the

Christoffel symbols are invariant under constant rescalings of the metric because they

are schematically of the form g−1∂g. Therefore the Riemann curvature tensor, which

106



only involves derivatives and products of Christoffel symbols, is also invariant. Hence

the Ricci tensor, which is just a contraction of the Riemann tensor, is also invariant.

However, to construct the Ricci scalar, one needs the inverse metric. This introduces an

explicit a-dependence and the result is that the curvature scalar of a sphere of radius a

is R = 2/a2. In particular, the curvature scalar of a large sphere is smaller than that of

a small sphere.

This result could also have been obtained on purely dimensional grounds. The curva-

ture scalar is constructed from second derivatives of the metric. Hence it has length-

dimension (-2). Therefore for a sphere of radius a, R has to be proportional to 1/a2.

Comparing with the known result for a = 1 determines R = 2/a2, as before.

7.6 * More on Curvature in 2 (spacelike) Dimensions

We can generalise the previous example somewhat, in this way connecting our consid-

erations with the classical realm of the differential geometry of surfaces, in particular

with the Gauss Curvature and with the Liouville Equation.

It is a simple exercise to derive the relation between the one independent component,

say R1212, of the Riemann tensor, and the scalar curvature. First of all, the Ricci tensor

is

Rαβ = Rγαγβ = R1
α1β +R2

α2β (7.28)

so that the scalar cruvature is

R = gαβRαβ = g11R2
121 + g12R1

112 + g21R2
221 + g22R1

212 . (7.29)

Using the fact that in 2 dimensions the components of the inverse metric are explicitly

given by
(
gαβ
)

=
1

g11g22 − g12g21

(
g22 −g12
−g21 g11

)

(7.30)

and the (anti-)symmetry properties (1) and (2) of the Riemann tensor, one finds

R =
2

g11g22 − g12g21
R1212 . (7.31)

The factor of 2 in this equation is a consequence of our (and the conventional) definition

of the Riemann curvature tensor, and is responsible for the fact that the scalar curvature

of the unit 2-sphere is R = +2. In two dimensions, it is more convenient and natural to

absorb this factor of 2 into the definition of the (scalar) curvature, and what one then

gets is the classical Gauss Curvature

K :=
1

2
R (7.32)

of a two-dimensional surface.
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When we specialise the above to the class of conformally flat metrics with line element

ds2 = e2h(x, y)(dx2 + dy2) ⇔ gαβ = exp 2h(x, y)δαβ (7.33)

one finds the simple (and easy to memorise) results

Rxyxy = −∆h (7.34)

and

K = −e−2h∆h (7.35)

where ∆ = ∂2
x + ∂2

y is the 2-dimensional Laplacian with respect to the flat Euclidean

metric dx2 + dy2. Thus a surface with constant curvature K = k is given by a solution

to the non-linear differential equation

∆h+ ke2h = 0 . (7.36)

This is the (in-)famous Liouville equation, which plays a fundamental role in many

branches of mathematics (and mathematical physics). In terms of the intrinsic Laplacian

∆g associated to the metric gαβ , the Gaussian cuvature and the Liouville equation can

also simply be written as

K = −∆gh , ∆gh+ k = 0 , (7.37)

since, due to the peculiarities of 2 dimensions,
√
ggαβ in independent of h, i.e. is confor-

mally invariant (as we already observed in a different context in section 5.5, cf. (5.39)),

√
ggαβ = e2he−2hδαβ = δαβ

⇒ ∆g =
1√
g
∂α(

√
ggαβ∂β) =

1√
g
∂α(δαβ∂β) = e−2h∆ .

(7.38)

I will not attempt to say anything about the general (local) solution of this equation

(which roughly speaking depends on an arbitrary meromorphic function of the com-

plex coordinate z = x + iy), but close this section with some special (and particularly

prominent) solutions of this equation.

1. It is easy to see that

e2h(x, y) = y−2 ⇔ h(x, y) = − ln y (7.39)

solves the Liouville equation with k = −1. The corresponding space of constant

negative curvature is the Poincaré upper-half plane model of the hyperbolic ge-

ometry,

ds2 =
dx2 + dy2

y2
( (x, y) ∈ R

2, y > 0 ) . (7.40)

By the coordinate transformation y = ez this is mapped to the equivalent metric

ds2 = dz2 + e−2zdx2 (7.41)

on the entire (x, z)-plane.
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2. Another solution (for any k) is the rotationally invariant function

e2h(x, y) = 4(1 + k(x2 + y2))−2 ⇔ h = − ln(1 + k(x2 + y2)) + const. (7.42)

(a) For k = 0 one finds the flat (zero curvature) Euclidean metric on R
2.

(b) For k = +1, one obtains the metric

ds2 = 4
dx2 + dy2

(1 + x2 + y2)2
. (7.43)

This is the constant positive curvature metric on the Riemann sphere one

gets by stereographic projection of the standard metric on the two-sphere S2

to the (x, y)-plane.

(c) For k = −1, one finds

ds2 = 4
dx2 + dy2

(1 − (x2 + y2))2
( {x, y} ∈ R

2, x2 + y2 < 1 ) . (7.44)

This is the Poincaré disc model of the hyperbolic geometry, defined in the

interior of the unit disc in R
2. The two metrics (7.40) and (7.44) are isometric,

i.e. related by a (not completely evident) coordinate transformation.

It is worth remarking that the Poincaré upper-half plane model of a space with constant

negative curvature readily generalises to arbitrary dimension and signature. Thus

ds2 =
d~x2 + dy2

y2
, d~x2 = δabdx

adxb or d~x2 = ηabdx
adxb (7.45)

is the metric of a (d+ 1)-dimensional space(-time) with constant negative curvature.

The Lorentzian metric will reappear later as a solution to the Einstein equations with

a negative cosmological constant, and is in this context known as anti-de Sitter metric

(in Poincaré coordinates, which cover only a part of the complete space-time).

7.7 Bianchi Identities

So far, we have discussed algebraic properties of the Riemann tensor. But the Riemann

tensor also satisfies some differential identities which, in particular in their contracted

form, will be of fundamental importance in the following.

The first identity is easy to derive. As a (differential) operator the covariant derivative

clearly satisfies the Jacobi identity

[∇[µ, [∇ν ,∇λ]]] = 0 (7.46)
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If you do not believe this, just write out the twelve relevant terms explicitly to see that

this identity is true:

[∇[µ, [∇ν ,∇λ]]] ∼ ∇µ∇ν∇λ −∇µ∇λ∇ν −∇ν∇λ∇µ + ∇λ∇ν∇µ

+ ∇λ∇µ∇ν −∇λ∇ν∇µ + ∇ν∇µ∇λ −∇µ∇ν∇λ

+ ∇ν∇λ∇µ −∇ν∇µ∇λ −∇λ∇µ∇ν + ∇µ∇λ∇ν

= 0 . (7.47)

Hence, recalling the definition of the curvature tensor in terms of commutators of co-

variant derivatives, we obtain

Jacobi Identity ⇒ Bianchi identity: Rαβ[µν ;λ] = 0

⇔ ∇[λRαβ]µν = 0 . (7.48)

Because of the antisymmetry of the Riemann tensor in the first two indices, this can

also be written more explicitly as

∇λRαβµν + ∇νRαβλµ + ∇µRαβνλ = 0 . (7.49)

By contracting this with gαµ we obtain

∇λRβν −∇νRβλ + ∇µR
µ
βνλ = 0 . (7.50)

To also turn the last term into a Ricci tensor we contract once more, with gβλ to obtain

the contracted Bianchi identity

∇λR
λ
ν −∇νR+ ∇µR

µ
ν = 0 , (7.51)

or

∇µ(Rµν − 1
2gµνR) = 0 . (7.52)

The tensor appearing in this equation is the so-called Einstein tensor Gµν ,

Gµν = Rµν − 1
2gµνR . (7.53)

It is the unique divergence-free tensor that can be built from the metric and its first

and second derivatives (apart from gµν itself, of course), and this is why it will play the

central role in the Einstein equations for the gravitational field.

7.8 Another Look at the Principle of General Covariance

In the section on the principle of minimal coupling, I mentioned that this algorithm

or the principle of general covariance do not necessarily fix the equations uniquely. In

other words, there could be more than one generally covariant equation which reduces
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to a given equation in Minkowski space. Having the curvature tensor at our disposal

now, we can construct examples of this kind.

As a first example, consider a massive particle with spin, characterised by a spin tensor

Sµν . We could imagine the possibility that in a gravitiational field there is a coupling

between the spin and the curvature, so that the particle does not follow a geodesic, but

rather obeys an equation of the (Mathisson-Papapetrou) type

ẍµ + Γµνλẋ
ν ẋλ + aRµνλρẋ

νSλρ = 0 . (7.54)

This equation is clearly tensorial (generally covariant) and reduces to the equation for a

straight line in Minkowski space, but differs from the geodesic equation (which has the

same properties) for a 6= 0. But, since the Riemann tensor is second order in derivatives,

a has to be a dimensionful quantity (of length dimension 1) for this equation to make

sense. Thus the rationale for usually not considering such additional terms is that they

are irrelevant at scales large compared to some characteristic size of the particle, say its

Compton wave length.

We will mostly be dealing with weak gravitational fields and other low-energy phenom-

ena and under those circumstances the minimal coupling rule can be trusted. However,

it is not ruled out that under extreme conditions (very strong or strongly fluctuating

gravitational fields) such terms are actually present and relevant.

For another example, consider the wave equation for a (massless, say) scalar field Φ. In

Minkowski space, this is the Klein-Gordon equation which has the obvious curved space

analogue (4.48)

2Φ = 0 (7.55)

obtained by the minimal coupling description. However, one could equally well postulate

the equation

(2 + aR)Φ = 0 , (7.56)

where a is a (dimensionless) constant and R is the scalar curvature. This equation is

generally covariant, and reduces to the ordinary Klein-Gordon equation in Minkowski

space, so this is an acceptable curved-space extension of the wave equation for a scalar

field. Moreover, since here a is dimensionless, we cannot argue as above that this

ambiguity is irrelevant for weak fields. Indeed, one frequently postulates a specific non-

zero value for a which makes the wave equation conformally invariant (invariant under

position-dependent rescalings of the metric) for massless fields. This is an ambiguity we

have to live with.
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8 Curvature II: Geometry and Curvature

In this section, we will discuss three properties of the Riemann curvature tensor that

illustrate its geometric significance and thus, a posteriori, justify equating the commu-

tator of covariant derivatives with the intuitive concept of curvature. These properties

are

• the path-dependence of parallel transport in the presence of curvature,

• the fact that the space-time metric is equivalent to the (in an obvious sense flat)

Minkowski metric if and only if the Riemann curvature tensor vanishes, and

• the geodesic deviation equation describing the effect of curvature on the trajecto-

ries of families of freely falling particles.

8.1 Intrinsic Geometry, Curvature and Parallel Transport

The Riemann curvature tensor and its relatives, introduced above, measure the intrinsic

geometry and curvature of a space or space-time. This means that they can be calculated

by making experiments and measurements on the space itself. Such experiments might

involve things like checking if the interior angles of a triangle add up to π or not.

An even better method, the subject of this section, is to check the properties of parallel

transport. The tell-tale sign (or smoking gun) of the presence of curvature is the fact

that parallel transport is path dependent, i.e. that parallel transporting a vector V from

a point A to a point B along two different paths will in general produce two different

vectors at B. Another way of saying this is that parallel transporting a vector around a

closed loop at A will in general produce a new vector at A which differs from the initial

vector.

This is easy to see in the case of the two-sphere (see Figure 8). Since all the great

circles on a two-sphere are geodesics, in particular the segments N-C, N-E, and E-C in

the figure, we know that in order to parallel transport a vector along such a line we just

need to make sure that its length and the angle between the vector and the geodesic

line are constant. Thus imagine a vector 1 at the north pole N, pointing downwards

along the line N-C-S. First parallel transport this along N-C to the point C. There we

will obtain the vector 2, pointing downwards along C-S. Alternatively imagine parallel

transporting the vector 1 first to the point E. Since the vector has to remain at a

constant (right) angle to the line N-E, at the point E parallel transport will produce

the vector 3 pointing westwards along E-C. Now parallel transporting this vector along

E-C to C will produce the vector 4 at C. This vector clearly differs from the vector 2

that was obtained by parallel transporting along N-C instead of N-E-C.
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Figure 8: Figure illustrating the path dependence of parallel transport on a curved

space: Vector 1 at N can be parallel transported along the geodesic N-S to C, giving

rise to Vector 2. Alternatively, it can first be transported along the geodesic N-E (Vector

3) and then along E-C to give the Vector 4. Clearly these two are different. The angle

between them reflects the curvature of the two-sphere.
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To illustrate the claim about closed loops above, imagine parallel transporting vector 1

along the closed loop N-E-C-N from N to N. In order to complete this loop, we still have

to parallel transport vector 4 back up to N. Clearly this will give a vector, not indicated

in the figure, different from (and pointing roughly at a right angle to) the vector 1 we

started off with.

This intrinsic geometry and curvature described above should be contrasted with the

extrinsic geometry which depends on how the space may be embedded in some larger

space.

For example, a cylinder can be obtained by ‘rolling up’ R
2. It clearly inherits the flat

metric from R
2 and if you calculate its curvature tensor you will find that it is zero.

Thus, the intrinsic curvature of the cylinder is zero, and the fact that it looks curved to

an outside observer is not something that can be detected by somebody living on the

cylinder. For example, parallel transport is rather obviously path independent.

As we have no intention of embedding space-time into something higher dimensional, we

will only be concerned with intrinsic geometry in the following. However, if you would

for example be interested in the properties of spacelike hypersurfaces in space-time, then

aspects of both intrinsic and extrinsic geometry of that hypersurface would be relevant.

The precise statement regarding the relation between the path dependence of parallel

transport and the presence of curvature is the following. If one parallel transports a

covector Vµ (I use a covector instead of a vector only to save myself a few minus signs

here and there) along a closed infinitesimal loop xµ(τ) with, say, x(τ0) = x(τ1) = x0,

then one has

Vµ(τ1) − Vµ(τ0) = 1
2(

∮
xρdxν)Rσµρν(x0)Vσ(τ0) . (8.1)

Thus an arbitrary vector V µ will not change under parallel transport around an arbitrary

small loop at x0 only if the curvature tensor at x0 is zero. This can of course be extended

to finite loops, but the important point is that in order to detect curvature at a given

point one only requires parallel transport along infinitesimal loops.

Before turning to a proof of this result, I just want to note that intuitively it can be

understood directly from the definition of the curvature tensor (7.2). Imagine that the

infinitesimal loop is actually a tiny parallelogram made up of the coordinate lines x1

and x2. Parallel transport along x1 is governed by the equation ∇1V
µ = 0, that along

x2 by ∇2V
µ = 0. The fact that parallel transporting first along x1 and then along x2

can be different from doing it the other way around is precisely the statement that ∇1

and ∇2 do not commute, i.e. that some of the components Rµν12 of the curvature tensor

are non-zero.

To establish (8.1) we first reformulate the condition of parallel transport,

D

Dτ
Vµ = 0 ⇔ d

dτ
Vµ = Γλµν ẋ

νVλ (8.2)
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with the initial condition at τ = τ0 as the integral equation

Vµ(τ) = Vµ(τ0) +

∫ τ

τ0

dτ ′ Γλµν(x(τ
′))ẋν(τ ′)Vλ(τ

′) . (8.3)

As usual, such an equation can be ‘solved’ by iteration (leading to a time-ordered

exponential). Keeping only the first two non-trivial terms in the iteration, one has

Vµ(τ) = Vµ(τ0) +

∫ τ

τ0

dτ ′ Γλµν(x(τ
′))ẋν(τ ′)Vλ(τ0)

+

∫ τ

τ0

dτ ′
∫ τ ′

τ0

dτ ′′ Γλµν(x(τ
′))ẋν(τ ′)Γσλρ(x(τ

′′))ẋρ(τ ′′)Vσ(τ0)

+ . . . (8.4)

For sufficiently small (infinitesimal) loops, we can expand the Christoffel symbols as

Γλµν(x(τ)) = Γλµν(x0) + (x(τ) − x0)
ρ(∂ρΓ

λ
µν)(x0) + . . . (8.5)

The linear term in the expansion of Vµ(τ) arises from the zero’th order contribution

Γλµν(x0) in the first order (single integral) term in (8.4),

[Vµ(τ1) − Vµ(τ0)]
(1) = Γλµν(x0)Vλ(τ0)(

∫ τ1

τ0

dτ ′ ẋν(τ ′)) . (8.6)

Now the important observation is that, for a closed loop, the integral in brackets is zero,

∫ τ1

τ0

dτ ′ẋν(τ ′) = xν(τ1) − xν(τ0) = 0 . (8.7)

Thus the change in Vµ(τ), when transported along a small loop, is at least of second

order. Such second order terms arise in two different ways, from the first order term

in the expansion of Γλµν(x) in the first order term in (8.4), and from the zero’th order

terms Γλµν(x0) in the quadratic (double integral) term in (8.4),

[Vµ(τ1) − Vµ(τ0)]
(2) = (∂ρΓ

λ
µν)(x0)Vλ(τ0)(

∫ τ1

τ0

dτ ′ (x(τ ′) − x0)
ρẋν(τ ′))

+ (ΓλµνΓ
σ
λρ)(x0)Vσ(τ0)

∫ τ1

τ0

dτ ′
∫ τ ′

τ0

dτ ′′ ẋν(τ ′)ẋρ(τ ′′) (8.8)

The τ ′′-integral can be performed explicitly,

∫ τ1

τ0

dτ ′
∫ τ ′

τ0

dτ ′′ ẋν(τ ′)ẋρ(τ ′′) =

∫ τ1

τ0

dτ ′ ẋν(τ ′)(x(τ ′) − x0)
ρ =

∫ τ1

τ0

dτ ′ ẋν(τ ′)xρ(τ ′)

(8.9)

and therefore we find

Vµ(τ1) − Vµ(τ0) ≈ (∂ρΓ
σ
µν + ΓλµνΓ

σ
λρ)(x0)Vσ(τ0)(

∫ τ1

τ0

dτ ′ ẋν(τ ′)xρ(τ ′)) (8.10)
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The final observation we need is that the remaining integral is anti-symmetric in the

indices ν, ρ, which follows immediately from
∫ τ1

τ0

dτ ′ (ẋν(τ ′)xρ(τ ′) + xν(τ ′)ẋρ(τ ′) =

∫ τ1

τ0

dτ ′
d

dτ ′
(xν(τ ′)xρ(τ ′)) = 0 . (8.11)

It now follows from (8.10) and the definition of the Riemann tensor that

Vµ(τ1) − Vµ(τ0) = 1
2(

∮
xρdxν)Rσµρν(x0)Vσ(τ0) . (8.12)

8.2 Vanishing Riemann Tensor and Existence of Flat Coordinates

We are now finally in a position to prove the converse to the statement that the

Minkowski metric has vanishing Riemann tensor. Namely, we will see that when the

Riemann tensor of a metric vanishes, there are coordinates in which the metric is the

standard Minkowski metric. Since the opposite of curved is flat, this then allows one

to unambiguously refer to the Minkowski metric as the flat metric, and to Minkowski

space as flat space(-time).

So let us assume that we are given a metric with vanishing Riemann tensor. Then, by

the above, parallel transport is path independent and we can, in particular, extend a

vector V µ(x0) to a vector field everywhere in space-time: to define V µ(x1) we choose any

path from x0 to x1 and use parallel transport along that path. In particular, the vector

field V µ, defined in this way, will be covariantly constant or parallel, ∇µV
ν = 0. We can

also do this for four linearly independent vectors V µ
a at x0 and obtain four covariantly

constant (parallel) vector fields which are linearly independent at every point.

An alternative way of saying or seeing this is the following: The integrability condition

for the equation ∇µV
λ = 0 is

∇µV
λ = 0 ⇒ [∇µ,∇ν ]V

λ = RλσµνV
σ = 0 . (8.13)

This means that the (4 × 4) matrices M(µ, ν) with coefficients M(µ, ν)λσ = Rλσµν have

a zero eigenvalue. If this integrability condition is satisfied, a solution to ∇µV
λ can be

found. If one wants four linearly independent parallel vector fields, then the matrices

M(µ, ν) must have four zero eigenvalues, i.e. they are zero and therefore Rλσµν = 0.

If this condition is satisfied, all the integrability conditions are satisfied and there will

be four linearly independent covariantly constant vector fields - the same conclusion as

above.

We will now use this result in the proof, but for covectors instead of vectors. Clearly

this makes no difference: if V µ is a parallel vector field, then gµνV
ν is a parallel covector

field.

Fix some point x0. At x0, there will be an invertible matrix eaµ such that

gµν(x0)e
a
µe
b
ν = ηab . (8.14)
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Now we solve the equations

∇νE
a
µ = 0 ⇔ ∂νE

a
µ = ΓλµνE

a
λ (8.15)

with the initial condition Eaµ(x0) = eaµ. This gives rise to four linearly independent

parallel covectors Eaµ.

Now it follows from (8.15) that

∂µE
a
ν = ∂νE

a
µ . (8.16)

Therefore locally there are four scalars ξa such that

Eaµ =
∂ξa

∂xµ
. (8.17)

These are already the flat coordinates we have been looking for. To see this, consider

the expression gµνEaµE
b
ν . This is clearly constant because the metric and the Eaµ are

covariantly constant,

∂λ(g
µνEaµE

b
ν) = ∇λ(g

µνEaµE
b
ν) = 0 . (8.18)

But at x0, this is just the flat metric and thus

(gµνEaµE
b
ν)(x) = (gµνEaµE

b
ν)(x0) = ηab . (8.19)

Summing this up, we have seen that, starting from the assumption that the Riemann

curvature tensor of a metric gµν is zero, we have proven the existence of coordinates ξa

in which the metric takes the Minkowski form,

gµν =
∂ξa

∂xµ
∂ξb

∂xν
ηab . (8.20)

8.3 The Geodesic Deviation Equation

In a certain sense the main effect of curvature (or gravity) is that initially parallel

trajectories of freely falling non-interacting particles (dust, pebbles,. . . ) do not remain

parallel, i.e. that gravity has the tendency to focus (or defocus) matter. This statement

find its mathematically precise formulation in the geodesic deviation equation.

Let us, as we will need this later anyway, recall first the situation in the Newtonian

theory. One particle moving under the influence of a gravitational field is governed by

the equation
d2

dt2
xi = −∂iφ(x) , (8.21)

where φ is the potential. Now consider a family of particles, or just two nearby particles,

one at xi(t) and the other at xi(t) + δxi(t). The other particle will of course obey the

equation
d2

dt2
(xi + δxi) = −∂iφ(x+ δx) . (8.22)
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From these two equations one can deduce an equation for δx itself, namely

d2

dt2
δxi = −∂i∂jφ(x)δxj . (8.23)

It is the counterpart of this equation that we will be seeking in the context of General

Relativity. The starting point is of course the geodesic equation for xµ and for its nearby

partner xµ + δxµ,
d2

dτ2x
µ + Γµνλ(x)

d
dτ x

ν d
dτ x

λ = 0 , (8.24)

and
d2

dτ2 (xµ + δxµ) + Γµνλ(x+ δx) ddτ (xν + δxν) ddτ (x
λ + δxλ) = 0 . (8.25)

As above, from these one can deduce an equation for δx, namely

d2

dτ2 δx
µ + 2Γµνλ(x)

d
dτ x

ν d
dτ δx

λ + ∂ρΓ
µ
νλ(x)δx

ρ d
dτ x

ν d
dτ x

λ = 0 . (8.26)

Now this does not look particularly covariant. Thus instead of in terms of d/dτ we

would like to rewrite this in terms of covariant operator D/Dτ , with

D

Dτ
δxµ =

d

dτ
δxµ + Γµνλ

dxν

dτ
δxλ . (8.27)

Calculating (D/Dτ)2δxµ, replacing ẍµ appearing in that expression by −Γµνλẋ
ν ẋλ (be-

cause xµ satisfies the geodesic equation) and using (8.26), one finds the nice covariant

geodesic deviation equation

D2

Dτ2
δxµ = Rµνλρẋ

ν ẋλδxρ . (8.28)

Note that for flat space(-time), this equation reduces to

d2

dτ2
δxµ = 0 , (8.29)

which has the solution

δxµ = Aµτ +Bµ . (8.30)

In particular, one recovers Euclid’s parallel axiom that two straight lines intersect at

most once and that when they are initially parallel they never intersect. This shows

very clearly that intrinsic curvature leads to non-Euclidean geometry in which e.g. the

parallel axiom is not necessarily satisifed.

It is also possible to give a manifestly covariant, and thus perhaps slightly more satisfac-

tory, derivation of the above gedesic deviation equation. The starting point is a geodesic

vector field uµ, uν∇νu
µ = 0, and a deviation vector field δxµ = ξµ characterised by the

condition

[u, ξ]µ = uν∇νξ
µ − ξν∇νu

µ = 0 . (8.31)
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The rationale for this condition is that, if xµ(τ, s) is a family of geodesics labelled by s,

one has the identifications

uµ =
∂

∂τ
xµ(τ, s) , ξµ =

∂

∂s
xµ(τ, s) . (8.32)

Since second partial derivatives commute, this implies the relation

∂

∂τ
ξµ(τ, s) =

∂

∂s
uµ(τ, s) , (8.33)

(implicit in the identification δẋ = (d/dτ)δx employed in the above derivation). The

condition (8.31) is nothing other than the covariant way of writing (8.33).

Given this set-up, we now want to calculate

D2

Dτ2
ξµ = uλ∇λ(u

ν∇νξ
µ) . (8.34)

Using (8.31) twice, one finds

uλ∇λ(u
ν∇νξ

µ) = uλ∇λ(ξ
ν∇νu

µ)

= (uλ∇λξ
ν)∇νu

µ + uλξν∇λ∇νu
µ

= (ξλ∇λu
ν)∇νu

µ + uλξν [∇λ,∇ν ]u
µ + uλξν∇ν∇λu

µ . (8.35)

Rewriting the last term as

uλξν∇ν∇λu
µ = ξν∇ν(u

λ∇λu
µ) − (ξν∇νu

λ)∇λu
µ (8.36)

one sees that the first term of the last line of (8.35) cancels and, using the definition of

the curvature tensor, one is left with

uλ∇λ(u
ν∇νξ

µ) = Rµσλνu
σuλξν + ξν∇ν(u

λ∇λu
µ) . (8.37)

So far, we have only used the condition [u, ξ]µ = 0 (8.31). Thus, for a general family

of curves (the integral curves of uµ), the deviation vector ξµ feels a force which is due

to both the curvature of space-time and the acceleration aµ = uλ∇λu
µ of the family of

curves. For geodesics, the latter is absent and one finds the geodesic deviation equation

(8.28) in the form

uλ∇λ(u
ν∇νξ

µ) = Rµσλνu
σuλξν . (8.38)

8.4 * The Raychaudhuri Equation

Manipulations similar to those leading from (8.35) to (8.38) allow one to derive an

equation for the rate of change of the divergence ∇µu
µ of a family of geodesics along

the geodesics. This simple result, known as the Raychaudhuri equation, has important

implications and ramifications in general relativity, in particular in the context of the so-

called singularity theorems of Penrose, Hawking and others, none of which will, however,

be explored here.
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To set the stage, let V µ be an, at first, arbitrary vector field. From the definition of the

curvature tensor,

(∇µ∇ν −∇ν∇µ)V
λ = RλρµνV

ρ , (8.39)

one deduces, after contracting the indices µ and λ,

(∇µ∇ν −∇ν∇µ)V
µ = RµνV

µ . (8.40)

Multiplying by V ν , one finds

V ν∇µ∇νV
µ − V ν∇ν∇µV

µ = RµνV
µV ν . (8.41)

Rewriting the first term as

V ν∇µ∇νV
µ = ∇µ(V

ν∇νV
µ) − (∇µV

ν)(∇νV
µ) (8.42)

this identity can be written as

V ν∇ν(∇µV
µ) + (∇µVν)(∇νV µ) −∇µ(V

ν∇νV
µ) +RµνV

µV ν = 0 . (8.43)

Now apply this identity to a geodesic vector field V µ → uµ, uν∇νu
µ = 0. Then the

third term disappears and one has

uν∇ν(∇µu
µ) + (∇µuν)(∇νuµ) +Rµνu

µuν = 0 . (8.44)

Here the first term is the rate of change of the divergence

θ = ∇µu
µ (8.45)

along uµ,

uν∇ν(∇µu
µ) =

d

dτ
θ , (8.46)

and we can therefore write the above result as

d

dτ
θ = −(∇µuν)(∇νuµ) −Rµνu

µuν . (8.47)

To gain some more insight into the geometric significance of this equation, consider the

case that uµ is timelike and normalised as uµuµ = −1 (so that τ is proper time) and

introduce the tensor

hµν = gµν + uµuν . (8.48)

It has the characteristic property that it is orthogonal to uµ,

uµhµν = hµνu
ν = 0 . (8.49)

It can therefore be interpreted as the spatial projection of the metric in the directions

orthogonal to the timelike vector field uµ. This can be seen more explicitly in terms of

the projectors

pµν = δµν + uµuν

pµνp
ν
λ = pµλ . (8.50)
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On directions tangential to uµ they act as

pµνu
ν = 0 , (8.51)

whereas on vectors ξµ orthogonal to uµ, uµξ
µ = 0 (spacelike vectors), one has

pµνξ
ν = ξµ . (8.52)

Thus, acting on an arbitrary vector field V µ, pµνV ν is the projection of this vector into

the plane orthogonal to uµ. In the same way one can project an arbitrary tensor. For

example, the projection of the metric is

gµν → gλρp
λ
µp

ρ
ν = gµν + uµuν = hµν , (8.53)

as anticipated above. In particular, while for the space-time metric one obviously has

gµνgµν = 4, the trace of hµν is

gµνhµν = gµνgµν + gµνuµuν = 4 − 1 = 3 = hµνhµν . (8.54)

Now let us introduce the tensor

Bµν = ∇νuµ . (8.55)

This tensor satisfies

uµBµν = 1
2∇ν(uµu

µ) = 1
2∇ν(−1) = 0 (8.56)

and

Bµνu
ν = uν∇νuµ = 0 (8.57)

and is thus a spatial tensor in the sense above. We now decompose Bµν into its anti-

symmetric, symmetric-traceless and trace part,

Bµν = ωµν + σµν + 1
3θhµν , (8.58)

with

ωµν = 1
2 (Bµν −Bµν)

σµν = 1
2 (Bµν +Bµν) − 1

3θhµν

θ = hµνBµν = gµνBµν = ∇µu
µ . (8.59)

The quantities ωµν , σµν and θ are known as the rotation tensor, shear tensor, and

expansion of the congruence (family) of geodesics defined by uµ. In particular, the

geodesics will converge (diverge) if θ > 0 (θ < 0). In terms of these quantities we can

write the Raychaudhuri equation (8.47) as

d

dτ
θ = −1

3θ
2 − σµνσµν + ωµνωµν −Rµνu

µuν . (8.60)

Remarks:
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1. An important special case of this equation arises when the rotation is zero, ωµν =

0. This happens for example when uµ = ∂µF is the gradient co-vector of some

function F . In this case uµ is orthogonal to the level-surfaces of F .

In this case one has

d

dτ
θ = −1

3θ
2 − σµνσµν −Rµνu

µuν . (8.61)

The first two terms on the right hand side are manifestly non-positive (recall that

σµν is a spatial tensor and hence σµνσ
µν ≥ 0). Thus, if one assumes that the

geometry is such that

Rµνu
µuν ≥ 0 (8.62)

(by the Einstein equations to be discussed in the next section, this translates into

a positivity condition on the energy-momentum tensor known as the strong energy

condition), one finds

d

dτ
θ = −1

3θ
2 − σµνσµν −Rµνu

µuν ≤ 0 . (8.63)

This means that the divergence (convergence) of geodesics will decrease (increase)

in time. The interpretation of this result is that gravity is an attractive force (for

matter satisfying the strong energy condition) whose effect is to focus geodesics.

2. According to (8.63), dθ/dτ is not only negative but actually bounded from above

by
d

dτ
θ ≤ −1

3θ
2 . (8.64)

Rewriting this equation as
d

dτ

1

θ
≥ 1

3
, (8.65)

one deduces immediately that

1

θ(τ)
≥ 1

θ(0)
+
τ

3
. (8.66)

This has the rather dramatic implication that, if θ(0) < 0 (i.e. the geodesics are

initially converging), then θ(τ) → −∞ within finite proper time τ ≤ 3/|θ(0)|.

3. If one thinks of the geodesics as trajectories of physical particles, this is obviously

a rather catastrophic sitaution in which these particles will be infinitely squashed.

In general, however, the divergence of θ only indicates that the family of geodesics

develops what is known as a caustic where different geodesics meet. Nevertheless,

the above result plays a crucial role in establishing the occurrence of true singu-

larities in general relativity if supplemented e.g. by conditions which ensure that

such “harmless” caustics cannot appear.
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9 Towards the Einstein Equations

9.1 Heuristics

We expect the gravitational field equations to be non-linear second order partial dif-

ferential equations for the metric. If we knew more about the weak field equations of

gravity (which should thus be valid near the origin of an inertial coordinate system) we

could use the Einstein equivalence principle (or the principle of general covariance) to

deduce the equations for strong fields.

However, we do not know a lot about gravity beyond the Newtonian limit of weak time-

independent fields and low velocities, simply because gravity is so ‘weak’. Hence, we

cannot find the gravitational field equations in a completely systematic way and some

guesswork will be required.

Nevertheless we will see that with some very few natural assumptions we will arrive at

an essentially unique set of equations. Further theoretical (and aesthetical) confirmation

for these equations will then come from the fact that they turn out to be the Euler-

Lagrange equations of the absolutely simplest action principle for the metric imaginable.

Recall that, way back, in section 1.1, we had briefly discussed the possibility of a scalar

relativistic theorry of gravity described by an equation of the form (1.2)

∆φ = 4πGρ −→ 2φ = 4πGρ . (9.1)

We had noted there that one way to render this equation (tensorially) consistent is to

think of both the left and the right hand side as (00)-components of some tensor, which

we expressed in (1.5) as

{Some tensor generalising ∆φ}αβ ∼ 4πGTαβ . (9.2)

While this appeared to be an exotic proposal back in section 1.1, we now understand

that this is exactly what is required, and we have a fairly precise idea of what this tensor

on the left-hand-side should be.

Indeed, recall from our discussion of the Newtonian limit of the geodesic equation that

the weak static field produced by a non-relativistic mass density ρ is

g00 = −(1 + 2φ) , (9.3)

With the identification

T00 = ρ , (9.4)

the Newtonian field equation ∆φ = 4πGρ can now also be written as

∆g00 = −8πGT00 . (9.5)
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This suggests that the weak-field equations for a general energy-momentum tensor take

the form

Eµν = 8πGTµν , (9.6)

where Eµν is constructed from the metric and its first and second derivatives.

But by the Einstein equivalence principle, if this equation is valid for weak fields (i.e.

near the origin of an inertial coordinate system) then also the equations which gov-

ern gravitational fields of arbitrary strength must be of this form, with Eµν a tensor

constructed from the metric and its first and second derivatives.

Another way of anticipating what form the field equations for gravity may take is via

an analogy, a comparison of the geodesic deviation equations in Newton’s theory and

in General Relativity. Recall that in Newton’s theory we have

d2

dt2
δxi = −Ki

jδx
j

Ki
j = ∂i∂jφ , (9.7)

whereas in General Relativity we have

D2

Dt2
δxµ = −Kµ

νδx
ν

Kµ
ν = Rµλνρẋ

λẋρ . (9.8)

Now Newton’s field equation is

TrK ≡ ∆φ = 4πGρ , (9.9)

while in General Relativity we have

TrK = Rµν ẋ
µẋν . (9.10)

This suggests that somehow in the gravitational field equations of General Relativity, ∆φ

should be replaced by the Ricci tensor Rµν . Note that, at least roughly, the tensorial

structure of this identification is compatible with the relation between φ and g00 in

the Newtonian limit, the relation between ρ and the 0-0 component T00 of the energy

momentum tensor, and the fact that for small velocities Rµν ẋ
µẋν ∼ R00.

We will now turn to a somewhat more precise argument along these lines which will

enable us to determine Eµν .

9.2 A More Systematic Approach

Let us take stock of what we know about Eµν .

1. Eµν is a tensor
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2. Eµν has the dimensions of a second derivative. If we assume that no new dimen-

sionful constants enter in Eµν then it has to be a linear combination of terms which

are either second derivatives of the metric or quadratic in the first derivatives of

the metric. (Later on, we will see that there is the possibility of a zero derivative

term, but this requires a new dimensionful constant, the cosmological constant Λ.

Higher derivative terms could in principle appear but would only be relevant at

very high energies.)

3. Eµν is symmetric since Tµν is symmetric.

4. Since Tµν is covariantly conserved, the same has to be true for Eµν ,

∇µT
µν = 0 ⇒ ∇µE

µν = 0 . (9.11)

5. Finally, for a weak stationary gravitational field and non-relativistic matter we

should find

E00 = −∆g00 . (9.12)

Now it turns out that these conditions (1)-(5) determine Eµν uniquely ! First of all, (1)

and (2) tell us that Eµν has to be a linear combination

Eµν = aRµν + bgµνR , (9.13)

where Rµν is the Ricci tensor and R the Ricci scalar. Then condition (3) is automatically

satisfied.

To implement (4), we rewrite the above as a linear combination of the Einstein tensor

(7.53) and gµνR,

Eµν = aGµν + cgµνR ≡ a(Rµν − 1
2gµνR) + cgµνR (9.14)

and recall the contracted Bianchi identity (7.51,7.52),

∇µGµν = 0 . (9.15)

It follows that (4) is satisfied iff c∇νR = c∂νR = 0. We therefore have to require either

∇νR = 0 or c = 0. That the first possibility is ruled out (inconsistent) can be seen by

taking the trace of (9.6),

Eµµ = (4c − a)R = 8πGT µµ . (9.16)

Thus, R is proportional to T µµ and since this quantity need certainly not be constant

for a general matter configuration, we are led to the conclusion that c = 0. Thus we

find

Eµν = aGµν . (9.17)

We can now use condition (5) to determine the constant a.
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9.3 The Weak-Field Limit

By the above considerations we have determined the field equations to be of the form

aGµν = 8πGTµν , (9.18)

with a some, as yet undetermined, constant. We will now consider the weak-field limit

of this equation. We need to find that G00 is proportional to ∆g00 and we can then

use the condition (5) to fix the value of a. The following manipulations are somewhat

analogous to those we performed when considering the Newtonian limit of the geodesic

equation. The main difference is that now we are dealing with second derivatives of the

metric rather than with just its first derivatives entering in the geodesic equation.

First of all, for a non-relativistic system we have |Tij | ≪ T00 and hence |Gij | ≪ |G00|.
Therefore we conclude

|Tij | ≪ T00 ⇒ Rij ∼ 1
2gijR . (9.19)

Next, for a weak field we have gµν = ηµν +hµν with hµν small (in a suitable sense) and,

in particular,

R ∼ ηµνRµν = Rkk −R00 , (9.20)

which, together with (9.19), translates into

R ∼ 3
2R−R00 . (9.21)

or

R ∼ 2R00 . (9.22)

In the weak field limit, R00 in turn is given by

R00 = Rk0k0 = ηikRi0k0 . (9.23)

Moreover, in this limit only the linear (second derivative) part of Rµνλσ will contribute,

not the terms quadratic in first derivatives. Thus we can use the expression (7.11) for

the curvature tensor. Additionally, in the static case we can ignore all time derivatives.

Then only one term (the third) of (7.11) contributes and we find

Ri0k0 = −1
2g00,ik , (9.24)

and therefore

R00 = −1
2∆g00 . (9.25)

Thus, putting everything together, we get

G00 = (R00 − 1
2g00R)

= (R00 − 1
2η00R)

= (R00 + 1
2R)

= (R00 +R00)

= −∆g00 . (9.26)
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Thus we obtain the correct functional form of E00 and comparison with condition (5)

determines a = +1 and therefore Eµν = Gµν .

9.4 The Einstein Equations

We have finally arrived at the Einstein equations for the gravitational field (metric) of

a matter-energy configuration described by the energy-momentum tensor Tµν . It is

Rµν − 1
2gµνR = 8πG Tµν (9.27)

With c not set equal to one, and with the convention that T00 is normalised such that

it gives the energy-density rather than the mass-density, one finds that the factor 8πG

on the right hand side should be replaced by

8πG → 8πG

c4
. (9.28)

A note on dimensions: Newton’s constant has dimensions (M mass, L length, T time)

[G] = M−1L3T−2 so that

[G] = M−1L3T−2 ⇒ [G/c4] = L−1M−1T2 . (9.29)

Moreover, an energy density ρ = µc2, µ a mass density, has dimensions

[ρ] = [µc2] = ML−3L2T−2 = ML−1T−2 . (9.30)

Thus

[ρG/c4] = L−2 = [Rµν ] , (9.31)

as it should be. Frequently, an alternative convention is used in which T00 is a mass

density, so that then Ttt = c2T00 is the energy density. In that case, the factor on the

right-hand-side of the Einstein equations is 8πG/c2.

Another common way of writing the Einstein equations is obtained by taking the trace

of (9.27), which yields

R− 2R = 8πG T µµ , (9.32)

and substituting this back into (9.27) to obtain

Rµν = 8πG(Tµν − 1
2gµνT

λ
λ) . (9.33)

In particular, for the vacuum, Tµν = 0, the Einstein equations are simply

Rµν = 0 . (9.34)
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A space-time metric satisfying this equation is, for obvious reasons, said to be Ricci-

flat. And I should probably not have said ‘simply’ in the above because even the

vacuum Einstein equations still constitute a complicated set of non-linear coupled partial

differential equations whose general solution is not, and probably will never be, known.

Usually one makes some assumptions, in particular regarding the symmetries of the

metric, which simplify the equations to the extent that they can be analysed explicitly,

either analytically, or at least qualitatively or numerically.

As we saw before, in two and three dimensions, vanishing of the Ricci tensor implies the

vanishing of the Riemann tensor. Thus in these cases, the space-times are necessarily

flat away from where there is matter, i.e. at points at which Tµν(x) = 0. Thus there are

no true gravitational fields and no gravitational waves.

In four dimensions, however, the situation is completely different. As we saw, the Ricci

tensor has 10 independent components whereas the Riemann tensor has 20. Thus there

are 10 components of the Riemann tensor which can curve the vacuum, as e.g. in the

field around the sun, and a lot of interesting physics is already contained in the vacuum

Einstein equations.

9.5 Significance of the Bianchi Identities

Because the Ricci tensor is symmetric, the Einstein equations consitute a set of ten

algebraically independent second order differential equations for the metric gµν . At

first, this looks exactly right as a set of equations for the ten components of the metric.

But at second sight, this cannot be right. After all, the Einstein equations are generally

covariant, so that they can at best determine the metric up to coordinate transforma-

tions. Therefore we should only expect six independent generally covariant equations

for the metric. Here we should recall the contracted Bianchi identities. They tell us

that

∇µGµν = 0 , (9.35)

and hence, even though the ten Einstein equations are algebraically independent, there

are four differential relations among them, so this is just right.

It is no coincidence, by the way, that the Bianchi identities come to the rescue of general

covariance. We will see later that the Bianchi identities can in fact be understood as a

consequence of the general covariance of the Einstein equations (and of the corresopnd-

ing action principle).

The general covariance of the Einstein equations is reflected in the fact that only six of

the ten equations are truly dynamical equations, namely (for the vacuum equations for

simplicity)

Gij = 0 , (9.36)
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where i, j = 1, 2, 3. The other four, namely

Gµ0 = 0 , (9.37)

are constraints that have to be satisfied by the initial data gij and, say, dgij/dt on some

initial spacelike hypersurface (Cauchy surface).

These constraints are analogues of the Gauss law constraint of Maxwell theory (which

is a consequence of the U(1) gauge invariance of the theory), but significantly more

complicated. Over the years, a lot of effort has gone into developing a formalism and

framework for the initial value and canonical (phase space) description of General Rela-

tivity. The most well known and useful of these is the so-called ADM (Arnowitt, Deser,

Misner) formalism. The canonical formalism has been developed in particular with an

eye towards canonical quantisation of gravity.

9.6 The Cosmological Constant

As mentioned before, there is one more term that can be added to the Einstein equations

provided that one relaxes the condition (2) that only terms quadratic in derivatives

should appear. This term takes the form Λgµν . This is compatible with the condition

(4) (the conservation law) provided that Λ is a constant, the cosmological constant. it

is a dimensionful parameter with dimension [Λ] = L−2 one over length squared.

The Einstein equations with a cosmological constant now read

Rµν − 1
2gµνR+ Λgµν = 8πGTµν . (9.38)

To be compatible with condition (5) ((1), (3) and (4) are obviously satisfied), Λ has to

be quite small (and observationally it is very small indeed).

Λ plays the role of a vacuum energy density, as can be seen by writing the vacuum

Einstein equations as

Rµν − 1
2gµνR = −Λgµν . (9.39)

Comparing this with the energy-momentum tensor of, say, a perfect fluid (see the section

on Cosmology),

Tµν = (ρ+ p)uµuν + pgµν , (9.40)

we see that Λ corresponds to the energy-density and pressure values

ρΛ = −pΛ =
Λ

8πG
. (9.41)

The cosmological constant was originally introduced by Einstein because he was unable

to find static cosmological solutions without it. After Hubble’s discovery of the expan-

sion of the universe, a static universe fell out of fashion, the cosmological constant was
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no longer required and Einstein rejected it (supposedly calling the introduction of Λ in

the first place his biggest blunder because he could have predicted the expansion of the

universe if he had simply believed in his equations without the cosmological constant).

However, things are not as simple as that. In fact, one of the biggest puzzles in theoret-

ical physics today is why the cosmological constant is so small. According to standard

quantum field theory lore, the vacuum energy density should be many many orders

of magnitude larger than astrophysical observations allow. Now usually in quantum

field theory one does not worry too much about the vacuum energy as one can normal-

order it away. However, as we know, gravity is unlike any other theory in that not

only energy-differences but absolute energies matter (and cannot just be dropped). The

question why the observed cosmological constant is so small (it may be exactly zero,

but recent astrophysical observations appear to favour a tiny non-zero value) is known

as the Cosmological Constant Problem. We will consider the possibility that Λ 6= 0 only

in the section on Cosmology (in all other applications, Λ can indeed be neglected).

9.7 * The Weyl Tensor and the Propagation of Gravity

The Einstein equations

Gµν = κTµν (9.42)

can, taken at face value, be regarded as ten algebraic equations for certain traces of the

Riemann tensor Rµνρσ. But Rµνρσ has, as we know, twenty independent components,

so how are the other ten determined? The obvious answer, already given above, is of

course that we solve the Einstein equations for the metric gµν and then calculate the

Riemann curvature tensor of that metric.

However, this answer leaves something to be desired because it does not really provide

an explanation of how the information about these other components is encoded in the

Einstein equations. It is interesting to understand this because it is precisely these

components of the Riemann tensor wich represent the effects of gravity in vacuum, i.e.

where Tµν = 0, like tidal forces and gravitational waves.

The more insightful answer is that the information is encoded in the Bianchi identities

which serve as propagation equations for the trace-free parts of the Riemann tensor

away from the regions where Tµν 6= 0.

Let us see how this works. First of all, we need to decompose the Riemann tensor

into its trace parts Rµν and R (determined directly by the Einstein equations) and its

traceless part Cµνρσ , the Weyl tensor.
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In any n ≥ 4 dimensions, the Weyl tensor is defined by

Cµνρσ = Rµνρσ

− 1

n− 2
(gµρRνσ +Rµρgνσ − gνρRµσ −Rνρgµσ)

+
1

(n− 1)(n − 2)
R(gµρgνσ − gνρgµσ) . (9.43)

This definition is such that Cµνρσ has all the symmetries of the Riemann tensor (this is

manifest) and that all of its traces are zero, i.e.

Cµνµσ = 0 . (9.44)

In the vacuum, Rµν = 0, and therefore

Tµν(x) = 0 ⇒ Rµνρσ(x) = Cµνρσ(x) , (9.45)

and, as anticipated, the Weyl tensor encodes the information about the gravitational

field in vacuum. The question thus is how Cµνρσ is determined everywhere in space-

time by an energy-momentum tensor which may be localised in some finite region of

space-time.

Contracting the Bianchi identity, which we write as

∇[λRµν]ρσ = 0 , (9.46)

over λ and ρ and making use of the symmetries of the Riemann tensor, one obtains

∇λRλσµν = ∇µRνσ −∇νRµσ . (9.47)

Expressing the Riemann tensor in terms of its contractions and the Weyl tensor, and

using the Einstein equations to replace the Ricci tensor and Ricci scalar by the energy-

momentum tensor, one now obtains a propagation equation for the Weyl tensor of the

form

∇µCµνρσ = Jνρσ , (9.48)

where Jνρσ depends only on the energy-momentum tensor and its derivatives. Deter-

mining Jνρσ in this way is straightforward and one finds

Jνρσ = κ
n− 3

n− 2

[
∇ρTνσ −∇σTνρ −

1

n− 1

[
∇ρT

λ
λgνσ −∇σT

λ
λgνρ

]]
. (9.49)

The equation (9.48) is reminiscent of the Maxwell equation

∇µFµν = Jν , (9.50)

and this is the starting point for a very fruitful analogy between the two subjects.

Indeed it turns out that in many other respects as well Cµνρσ behaves very much like
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an electro-magnetic field: one can define electric and magnetic components E and B,

these satisfy |E| = |B| for a gravitational wave, etc.

Finally, the Weyl tensor is also useful in other contexts as it is conformally invariant,

i.e. Cµνρσ is invariant under conformal rescalings of the metric

gµν(x) → ef(x)gµν(x) . (9.51)

In particular, the Weyl tensor is zero if the metric is conformally flat, i.e. related by a

conformal transformation to the flat metric, and conversely vanishing of the Weyl tensor

is also a sufficient condition for a metric to be conformal to the flat metric.

132



10 The Einstein Equations from a Variational Principle

10.1 The Einstein-Hilbert Action

To increase our confidence that the Einstein equations we have derived above are in fact

reasonable and almost certainly correct, we can adopt a more modern point of view.

We can ask if the Einstein equations follow from an action principle or, alternatively,

what would be a natural action principle for the metric.

After all, for example in the construction of the Standard Model, one also does not start

with the equations of motion but one writes down the simplest possible Lagrangian with

the desired field content and symmetries.

We will start with the gravitational part, i.e. the Einstein tensor Gµν of the Einstein

equations, and deal with the matter part, the energy-momentum tensor Tµν , later.

By general covariance, an action for the metric gµν will have to take the form

S =

∫ √
gd4x Φ(gµν) , (10.1)

where Φ is a scalar constructed from the metric. So what is Φ going to be? Clearly,

the simplest choice is the Ricci scalar R, and this is also the unique choice if one is

looking for a scalar constructed from not higher than second derivatives of the metric.

Therefore we postulate the beautifully simple and elegant action

SEH =
∫ √

gd4x R (10.2)

known as the Einstein-Hilbert action. It was presented by Hilbert practically on the

same day that Einstein presented his final form (9.27) of the gravitational field equations.

Discussions regarding who did what first and who deserves credit for what have been

a favourite occupation of historians of science ever since. But Hilbert’s work would

certainly not have been possible without Einstein’s realisation that gravity should be

regarded not as a force but as a property of space-time and that Riemannian geometry

provides the correct framework for embodying the equivalence principle.

We will now prove that the Euler-Lagrange equations following from the Einstein-Hilbert

Lagrangian indeed give rise to the Einstein tensor and the vacuum Einstein equations.

It is truly remarkable, that such a simple Lagrangian is capable of explaining practically

all known gravitational, astrophysical and cosmological phenomena (contrast this with

the complexity of the Lagrangian of the Standard Model or any of its generalisations).

Since the Ricci scalar is R = gµνRµν , it is simpler to consider variations δgµν of the
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inverse metric instead of δgµν . Thus, as a first step we write

δSEH = δ

∫ √
gd4x gµνRµν

=

∫
d4x (δ

√
ggµνRµν +

√
gδgµνRµν +

√
ggµνδRµν) . (10.3)

Now we make use of the identity (exercise!)

δg1/2 = 1
2g

1/2gλρδgλρ = −1
2g

1/2gλρδg
λρ . (10.4)

Hence,

δSEH =

∫ √
gd4x [(−1

2gµνR+Rµν)δg
µν + gµνδRµν ]

=

∫ √
gd4x (Rµν − 1

2gµνR)δgµν +

∫ √
gd4x gµνδRµν . (10.5)

The first term all by itself would already give the Einstein tensor. Thus we need to

show that the second term is identically zero. I do not know of any particularly elegant

argument to establish this (in a coordinate basis - written in terms of differential forms

this would be completely obvious), so this will require a little bit of work, but it is not

difficult.

Postponing the proof of this statement to the end of this section, we have established

that the variation of the Einstein-Hilbert action gives the gravitational part (left hand

side) of the Einstein equations,

δ

∫ √
gd4x R =

∫ √
gd4x (Rµν − 1

2gµνR)δgµν . (10.6)

Remarks:

1. We can also write this as

1√
g

δ

δgµν
SEH = Rµν − 1

2gµνR . (10.7)

2. If one wants to include the cosmological constant Λ, then the action gets modified

to

SEH,Λ =

∫ √
gd4x (R − 2Λ) . (10.8)

Indeed, the only effect of including Λ is to replace R → R − 2Λ in the Einstein

equations, so that

Gµν = Rµν − 1
2gµνR→ Gµν = Rµν − 1

2gµν(R− 2Λ) = Gµν + Λgµν , (10.9)

which gives rise to the modified Einstein equation (9.38).
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3. Of course, once one is working at the level of the action, it is easy to come up

with covariant generalisations of the Einstein-Hilbert action, such as

S =

∫ √
gd4x (R+ c1R

2 + c2RµνR
µν + c3R2R+ . . .) , (10.10)

but these invariably involve higher-derivative terms and are therefore irrelevant for

low-energy physics and thus the world we live in. Such terms could be relevant for

the early universe, however, and are also typically predicted by quantum theories

of gravity like string theory.

We conclude this section with the proof that gµνδRµν is a total derivative.

First of all, we need the explicit expression for the Ricci tensor in terms of the Christoffel

symbols, which can be obtained by contraction of (7.5),

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
νµ − ΓλνρΓ

ρ
λµ . (10.11)

Now we need to calculate the variation of Rµν . We will not require the explicit expression

in terms of the variations of the metric, but only in terms of the variations δΓµνλ induced

by the variations of the metric. This simplifies things considerably.

Obviously, δRµν will then be a sum of six terms,

δRµν = ∂λδΓ
λ
µν − ∂νδΓ

λ
µλ + δΓλλρΓ

ρ
νµ + ΓλλρδΓ

ρ
νµ − δΓλνρΓ

ρ
λµ − ΓλνρδΓ

ρ
λµ . (10.12)

Now the crucial observation is that δΓµνλ is a tensor. This follows from the arguments

given at the end of section 4, under the heading ‘Generalisations’, but I will repeat it

here in the present context. Of course, we know that the Christoffel symbols themselves

are not tensors, because of the inhomogeneous (second derivative) term appearing in

the transformation rule under coordinate transformations. But this term is independent

of the metric. Thus the metric variation of the Christoffel symbols indeed transforms

as a tensor.

This can also be confirmed by explicit calculation. Just for the record, I will give an

expression for δΓµνλ which is easy to remember as it takes exactly the same form as

the definition of the Christoffel symbol, only with the metric replaced by the metric

variation and the partial derivatives by covariant derivatives, i.e.

δΓµνλ = 1
2g
µρ(∇νδgρλ + ∇λδgρν −∇ρδgνλ) . (10.13)

It turns out, none too surprisingly, that δRµν can be written rather compactly in terms

of covariant derivatives of δΓµνλ, namely as

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
λµ . (10.14)

As a first check on this, note that the first term on the right hand side is manifestly

symmetric and that the second term is also symmetric because of (4.36) and (5.45). To
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establish (10.14), one simply has to use the definition of the covariant derivative. The

first term is

∇λδΓ
λ
µν = ∂λδΓ

λ
µν + ΓλλρδΓ

ρ
µν − ΓρµλδΓ

λ
ρν − ΓρνλδΓ

λ
ρµ , (10.15)

which takes care of the first, fourth, fifth and sixth terms of (10.12). The remaining

terms are

−∂νδΓλµλ + δΓλλρΓ
ρ
νµ = −∇νδΓ

λ
µλ , (10.16)

which establishes (10.14). Now what we really need is gµνδRµν ,

gµνδRµν = ∇λ(g
µνδΓλµν) −∇ν(g

µνδΓλλµ) . (10.17)

Using the explicit expression for δΓµνλ given above, we see that we can also write this

rather neatly and compactly as

gµνδRµν = (∇µ∇ν − 2gµν)δgµν . (10.18)

Since both of these terms are covariant divergences of vector fields,

gµνδRµν = ∇λJ
λ

Jλ = gµνδΓλµν − gµλδΓννµ , (10.19)

we can use Gauss’ theorem to conclude that
∫ √

gd4x gµνδRµν =

∫ √
gd4x ∇λJ

λ = 0 , (10.20)

(since Jµ is constructed from the variations of the metric which, by assumption, vanish

at infinity) as we wanted to show.

10.2 The Matter Action

In order to obtain the non-vacuum Einstein equations, we need to decide what the matter

Lagrangian should be. Now there is an obvious choice for this. If we have matter, then

in addition to the Einstein equations we also want the equations of motion for the

matter fields. Therefore we should add to the Einstein-Hilbert action the standard

matter action SM [φ, gαβ ] (φ representing any kind of (vector, tensor, . . . ) field), of

course suitably covariantised via the principle of minimal coupling (section 5). Thus

the matter action for a Klein-Gordon field would be (5.4) and that for Maxwell theory

would be (5.23) etc.

Of course, the variation of the matter action with respect to the matter fields will give

rise to the covariant equations of motion of the matter fields. But if we want to add

the matter action to the Einstein-Hilbert action and treat the metric as an additional

dynamical variable, then we have to ask what the variation of the matter action with
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respect to the metric is. The short answer is: the energy-momentum tensor. Indeed,

even though there are other definitions of the energy-momentum tensor you may know

(defined via Noether’s theorem applied to translations in flat space, for example), this

is the modern, and by far the most useful, definition of the energy-momentum tensor,

namely as the response of the matter action to a variation of the metric. And we had

already seen in section 5 that this definition (with a judicious factor of 2),

δmetricSM [φ, gαβ ] = −1
2

∫ √
gd4x Tµνδg

µν , (10.21)

or

Tµν := − 2√
g

δ

δgµν
SM [φ, gαβ ] (10.22)

reproduces the known results in the case of a scalar field or Maxwell theory. One of

the many advantages of this definition is that it automatically gives a symmetric and

gauge invariant tensor (no improvement terms or similar gymnastics required) which is

also automatically covariantly conserved. We will establish this latter fact below - it is

simply a consequence of the general covariance of SM .

Therefore, the complete gravity-matter action for General Relativity is

S[gαβ , φ] =
1

16πG
SEH [gαβ ] + SM [gαβ , φ] (10.23)

with
δS[gαβ , φ]

δgµν
= 0 ⇔ Gαβ = 8πGTαβ . (10.24)

Remarks:

1. As we saw above, a cosmological constant term can be included by adding a

constant term to the Einstein-Hilbert Lagrangian. But one can equally well add

a constant term to the matter Lagrangian instead (and this clearly reveals its

interpretation as a vacuum energy of the matter fields).

2. If one were to try to deduce the gravitational field equations by starting from a

variational principle, i.e. by constructing the simplest generally covariant action

for the metric and the matter fields (and this would be the modern approach to

the problem, had Einstein not already solved it for us a 100 years ago), then one

would also invariably be led to the above action.

The relative numerical factor 16πG between the two terms would of course then

not be fixed a priori, because this appraoch will not determine Newton’s constant.

The prefactor could once again be determined by looking at the Newtonian limit

of the resulting equations of motion.

3. Typically, the above action principle will lead to a very complicated coupled system

of equations for the metric and the matter fields because the metric also appears

in the energy-momentum tensor and in the equations of motion for the matter

fields.
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10.3 Consequences of the Variational Principle

I mentioned before that it is no accident that the Bianchi identities come to the rescue

of the general covariance of the Einstein equations in the sense that they reduce the

number of independent equations from ten to six. We will now see that indeed the

Bianchi identities are a consequence of the general covariance of the Einstein-Hilbert

action. Virtually the same calculation will show that the energy-momentum tensor, as

defined above, is automatically conserved (on shell) by virtue of the general covariance

of the matter action.

Let us start with the Einstein-Hilbert action. We already know that

δSEH =

∫ √
gd4x Gµνδg

µν (10.25)

for any metric variation. We also know that the Einstein-Hilbert action is invariant

under coordinate transformations. In particular, therefore, the above variation should

be identically zero for variations of the metric induced by an infinitesimal coordinate

transformation. But we know from the discussion of the Lie derivative that such a

variation is of the form

δV gµν = LV gµν = ∇µVν + ∇νVµ , (10.26)

or

δV g
µν = LV g

µν = −(∇µV ν + ∇νV µ) , (10.27)

where the vector field V is the infinitesimal generator of the coordinate transformation.

Thus, δV SEH should be identically zero. Calculating this we find

0 = δV SEH

= −
∫ √

gd4x Gµν(∇µV ν + ∇νV µ)

= −2

∫ √
gd4x Gµν∇µV ν

= 2

∫ √
gd4x ∇µGµνV

ν . (10.28)

Since this has to hold for all V we deduce

δV SEH = 0 ∀ V ⇒ ∇µGµν = 0 , (10.29)

and, as promised, the Bianchi identities are a consequence of the general covariance of

the Einstein-Hilbert action.

Now let us play the same game with the matter action SM . Let us denote the matter

fields generically by Φ so that LM = LM(Φ, gµν). Once again, the variation δV SM ,

expressed in terms of the Lie derivatives LV gµν and δV Φ = LVΦ of the matter fields
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should be identically zero, by general covariance of the matter action. Proceeding as

before, we find

0 = δV SM

=

∫ √
gd4x (−TµνδV gµν +

δLM
δΦ

δV Φ)

= −2

∫ √
gd4x (∇µTµν)V

ν +

∫ √
gd4x

δLM
δΦ

δV Φ . (10.30)

Now once again this has to hold for all V , and as the second term is identically zero

‘on-shell’, i.e. for Φ satisfying the matter equations of motion, we deduce that

δV SM = 0 ∀ V ⇒ ∇µTµν = 0 on-shell . (10.31)

This should be contrasted with the Bianchi identities which are valid ‘off-shell’.
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Part II: Selected Applications of General Relativity

Until now, our treatment of the basic structures and properties of Riemannian geometry

and General Relativity has been rather systematic. In the second half of the course, we

will instead discuss some selected applications of General Relativity. These will include,

of course, a discussion of the classical predictions and tests of General Relativity (the

deflection of light by the sun and the perihelion shift of Mercury). Then one can,

depending on time and interest, look at a variety of other topics. Here is a list of the

topics covered in the remainder of the notes (the blocks made of sections 11-13, 14-18,

19-20, and 21-22 can be read independently of each other):

11. The Schwarzschild Metric

12. Particle and Photon Orbits in the Schwarzschild Geometry

13. Black Holes: Approaching and Crossing the Schwarzschild Radius

14. Interlude: Maximally Symmetric Spaces

15. Cosmology I: Basics

16. Cosmology II: Basics of Friedmann-Robertson-Walker Cosmology

17. Cosmology III: Qualitative Analysis

18. Cosmology IV: Exact Solutions

19. Linearised Gravity and Gravitational Waves

20. Exact Wave-like Solutions of the Einstein Equations

21. Kaluza-Klein Theory
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11 The Schwarzschild Metric

11.1 Introduction

Einstein himself suggested three tests of General Relativity, namely

1. the gravitational red-shift

2. the deflection of light by the sun

3. the anomalous precession of the perihelion of the orbits of Mercury and Venus,

and calculated the theoretical predictions for these effects. In the meantime, other tests

have also been suggested and performed, for example the time delay of radar echos

passing the sun (the Shapiro effect).

All these tests have in common that they are carried out in empty space, with gravita-

tional fields that are to an excellent aproximation static (time independent) and isotropic

(spherically symmetric). Thus our first aim will have to be to solve the vacuum Einstein

equations under the simplifying assumptions of isotropy and time-independence. This,

as we will see, is indeed not too difficult.

11.2 Static Isotropic Metrics

Even though we have decided that we are interested in static isotropic metrics, we still

have to determine what we actually mean by this statement. After all, a metric which

looks time-independent in one coordinate system may not do so in another coordinate

system. There are two ways of approaching this issue:

1. One can try to look for a covariant characterisation of such metrics, in terms of

Killing vectors etc. In the present context, this would amount to considering met-

rics which admit four Killing vectors, one of which is timelike, with the remaining

three representing the Lie algebra of the rotation group SO(3).

2. Or one works with ‘preferred’ coordinates from the outset, in which these symme-

tries are manifest.

While the former approach may be conceptually more satisfactory, the latter is much

easier to work with and is hence the one we will adopt. We will implement the con-

dition of time-independence by choosing all the components of the metric to be time-

independent, and we will express the condition of isotropy by the requirement that, in

terms of spatial polar coordinates (r, θ, φ) the metric can be written as

ds2 = −A(r)dt2 +B(r)dr2 + 2C(r)dr dt+D(r)r2(dθ2 + sin2 θdφ2) . (11.1)
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This ansatz, depending on the four functions A(r), B(r), C(r),D(r), can still be simpli-

fied a lot by choosing appropriate new time and radial coordinates.

First of all, let us introduce a new time coordinate T (t, r) by

T (t, r) = t+ ψ(r) . (11.2)

Then

dT 2 = dt2 + ψ′2dr2 + 2ψ′dr dt . (11.3)

Thus we can eliminate the off-diagonal term in the metric by choosing ψ to satisfy the

differential equation
dψ(r)

dr
= −C(r)

A(r)
. (11.4)

We can also eliminateD(r) by introducing a new radial coordinate R(r) by R2 = D(r)r2.

Thus we can assume that the line element of a static isotropic metric is of the form

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2) . (11.5)

This is known as the standard form of a static isotropic metric. Another useful presen-

tation, related to the above by a coordinate transformation, is

ds2 = −E(r)dt2 + F (r)(dr2 + r2dΩ2) . (11.6)

This is the static isotropic metric in isotropic form. We will mostly be using the metric

in the standard form (11.5). Let us note some immediate properties of this metric:

1. By our ansatz, the components of the metric are time-independent. Because we

have been able to eliminate the dtdr-term, the metric is also invariant under time-

reversal t→ −t.

2. The surfaces of constant t and r have the metric

ds2|r=const.,t=const. = r2dΩ2 , (11.7)

and hence have the geometry of two-spheres.

3. Because B(r) 6= 1, we cannot identify r with the proper radial distance. However,

r has the clear geometrical meaning that the two-sphere of constant r has the area

A(S2
r ) = 4πr2.

4. Also, even though the coordinate time t is not directly measurable, it can be

invariantly characterised by the fact that ∂/∂t is a timelike Killing vector.

5. The functions A and B are now to be found by solving the Einstein field equations.
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6. If we want the solution to be asymptotically flat (i.e. that it approaches Minkowski

space for r → ∞), we need to impose the boundary conditions

lim
r→∞

A(r) = lim
r→∞

B(r) = 1 . (11.8)

We will come back to other aspects of measurements of space and time in such a geom-

etry after we have solved the Einstein equations.

We have assumed from the outset that the metric is static. However, it can be shown

with little effort (see section 11.4)) that the vacuum Einstein equations imply that a

spherically symmetric metric is static. This result is known as Birkhoff’s theorem. It is

the General Relativity analogue of the Newtonian result that a spherically symmetric

body behaves as if all the mass were concentrated in its center. In the present context

it means that the gravitational field not only of a static spherically symmetric body is

static and spherically symmetric (as we have assumed), but that the same is true for a

radially oscillating/pulsating object. This is a bit surprising because one would expect

such a body to emit gravitational radiation. What Birkhoff’s theorem shows is that

this radiation cannot escape into empty space (because otherwise it would destroy the

time-independence of the metric). Translated into the language of waves, this means

that there is no s-wave (monopole) gravitational radiation.

11.3 Solving the Einstein Equations for a Static Spherically Symmetric

Metric

We will now solve the vacuum Einstein equations for the static isotropic metric in

standard form, i.e. we look for solutions of Rµν = 0. You should have already (as an

exercise) calculated all the Christoffel symbols of this metric, using the Euler-Lagrange

equations for the geodesic equation.

As a reminder, here is how this method works. To calculate all the Christoffel symbols

Γrµν , say, in one go, you look at the Euler Lagrange equation for r = r(τ) resulting from

the Lagrangian L = gµν ẋ
µẋν/2. This is easily seen to be

r̈ +
B′

2B
ṙ2 +

A′

2B
ṫ2 + · · · = 0 (11.9)

(a prime denotes an r-derivative), from which one reads off that Γrrr = B′/2B etc.

Proceeding in this way, you should find (or have found) that the non-zero Christoffel

symbols are given by

Γrrr =
B′

2B
Γrtt =

A′

2B

Γrθθ = − r

B
Γrφφ = −r sin2 θ

B

Γθθr = Γφφr =
1

r
Γttr =

A′

2A

Γθφφ = − sin θ cos θ Γφφθ = cot θ (11.10)
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Now we need to calculate the Ricci tensor of this metric. A silly way of doing this

would be to blindly calculate all the components of the Riemann tensor and to then

perform all the relevant contractions to obtain the Ricci tensor. A more intelligent and

less time-consuming strategy is the following:

1. Instead of using the explicit formula for the Riemann tensor in terms of Christoffel

symbols, one should use directly its contracted version

Rµν = Rλµλν

= ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
µν − ΓλνρΓ

ρ
µλ (11.11)

and use the formula (4.36) for Γλµλ derived previously.

2. The high degree of symmetry of the Schwarzschild metric implies that many com-

ponents of the Ricci tensor are automatically zero. For example, invariance of the

Schwarzschild metric under t → −t implies that Rrt = 0. The argument for this

is simple. Since the metric is invariant under t→ −t, the Ricci tensor should also

be invariant. But under the coordinate transformation t→ −t, Rrt transforms as

Rrt → −Rrt. Hence, invariance requires Rrt = 0, and no further calculations for

this component of the Ricci tensor are required.

3. Analogous arguments, now involving θ or φ instead of t, imply that

Rrθ = Rrφ = Rtθ = Rtφ = Rθφ = 0 . (11.12)

4. Since the Schwarzschild metric is spherically symmetric, its Ricci tensor is also

spherically symmetric. It is easy to prove, by considering the effect of a coordinate

transformation that is a rotation of the two-sphere defined by θ and φ (leaving

the metric invariant), that this implies that

Rφφ = sin2 θRθθ . (11.13)

One possible proof (there may be a shorter argument): Consider a coordinate

transformation (θ, φ) → (θ′, φ′). Then

dθ2 + sin2 θdφ2 =

[(
∂θ

∂θ′

)2

+ sin2 θ

(
∂φ

∂θ′

)2
]
dθ′2 + . . . (11.14)

Thus, a necessary condition for the metric to be invariant is

(
∂θ

∂θ′
)2 + sin2 θ(

∂φ

∂θ′
)2 = 1 . (11.15)

Now consider the transformation behaviour of Rθθ under such a transformation.

Using Rθφ = 0, one has

Rθ′θ′ = (
∂θ

∂θ′
)2Rθθ + (

∂φ

∂θ′
)2Rφφ . (11.16)
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Demanding that this be equal to Rθθ (because we are considering a coordinate

transformation which does not change the metric) and using the condition derived

above, one obtains

Rθθ = Rθθ(1 − sin2 θ(
∂φ

∂θ′
)2) + (

∂φ

∂θ′
)2Rφφ , (11.17)

which implies (11.13).

5. Thus the only components of the Ricci tensor that we need to compute are Rrr,

Rtt and Rθθ.

Now some unenlightning calculations lead to the result that these components of the

Ricci tensor are given by

Rtt =
A′′

2B
− A′

4B
(
A′

A
+
B′

B
) +

A′

rB

Rrr = −A
′′

2A
+
A′

4A
(
A′

A
+
B′

B
) +

B′

rB

Rθθ = 1 − 1

B
− r

2B
(
A′

A
− B′

B
) . (11.18)

Inspection of these formulae reveals that there is a linear combination which is partic-

ularly simple, namely BRtt +ARrr, which can be written as

BRtt +ARrr = 1
rB (A′B +B′A) . (11.19)

Demanding that this be equal to zero, one obtains

A′B +B′A = 0 ⇒ A(r)B(r) = const. (11.20)

Asymptotic flatness fixes this constant to be = 1, so that

B(r) =
1

A(r)
. (11.21)

Plugging this result into the expression for Rθθ, one obtains

Rθθ = 0 ⇒ A− 1 + rA′ = 0 ⇔ (Ar)′ = 1 , (11.22)

which has the solution Ar = r + C or

A(r) = 1 +
C

r
. (11.23)

Now also Rtt = Rrr = 0.

To fix C, we compare with the Newtonian limit which tells us that asymptotically

A(r) = −g00 should approach (temporarily reinserting c) (1 + 2Φ/c2), where Φ =

145



−GM/r is the Newtonian potential for a static spherically symmetric star of mass M .

Thus C = −2MG/c2, and the final form of the metric is

ds2 = −(1 − 2MG
c2r

)c2dt2 + (1 − 2MG
c2r

)−1dr2 + r2dΩ2 (11.24)

This is the famous Schwarzschild metric, obtained by the astronomer Karl Schwarzschild

in 1916, the very same year that Einstein published his field equations, while he was

serving as a soldier in World War I (and discovered independently a few months later

by Johannes Droste, a student of Lorentz).

We will usually not write the constant G explicitly (and set c = 1), and thus we introduce

the abbreviation

m =
GM

c2
, (11.25)

in terms of which the Schwarzschild metric takes the form

ds2 = −(1 − 2m

r
)dt2 + (1 − 2m

r
)−1dr2 + r2dΩ2 . (11.26)

The interpretation of m is that of the gravitational mass radius associated to the mass

M . To see that all this is dimensionally correct, note that Newton’s constant has

dimensions (M mass, L length, T time) [G] = M−1L3T−2 so that

[G] = M−1L3T−2 ⇒ [m] = [GM/c2] = L . (11.27)

For examples of the value of m for various objects see section 11.5.

We have seen that, by imposing appropriate symmetry conditions on the metric, and

making judicious use of them in the course of the calculation, the complicated Einstein

equations become rather simple and manageable.

Before discussing some of the remarkable properties of the solution we have just found,

I want to mention that the coordinate transformation

r = ρ(1 +
MG

2ρ
)2 (11.28)

puts the Schwarzschild metric into isotropic form,

ds2 = −
(1 − MG

2ρ )2

(1 + MG
2ρ )2

dt2 + (1 +
MG

2ρ
)4(dρ2 + ρ2dΩ2) . (11.29)

The advantage of this istropic form of the metric is that one can replace dρ2 + ρ2dΩ2

by e.g. the standard metric on R
3 in Cartesian coordinates, or any other metric on R

3.

This is useful when one likes to think of the solar system as being essentially described

by flat space, with some choice of coordinates.
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11.4 Birkhoff’s Theorem

A slightly more general calculation than we have performed above provides us with (a)

somewhat more insight into the interpretation of the parameter M as the mass of the

solution and, as an added benefit, (b) a proof of Birkhoff’s theorem, mentioned above,

that a spherically symmetric vacuum solution of the Einstein equations is necessarily

static. Thus, let us start with a general spherically symmetric but not necessarily

time-independent metric. Arguments analogous to those leading to (11.5) allow one to

conclude that the metric can be chosen to be of the form

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2(dθ2 + sin2 θdφ2) . (11.30)

However, as we have already seen in the derivation of the Schwarzschild metric, this

parametrisation of the metric in terms of the two functions A(r) and B(r) is not ideal.

To see what might be more convenient, we first reanalyse the Einstein equations in the

time-independent case, but this time with an energy-momentum tensor. Thanks to the

relation (11.19) we have

Rrr −Rtt = (rB)−1 (AB)′

AB
. (11.31)

This suggests that it is useful to introduce a new function h(r) through

A(r)B(r) = e2h(r) , (11.32)

i.e. through

A(r) = e2h(r)f(r) , B(r) = f(r)−1 (11.33)

for some arbitrary new function f(r). Using the Einstein equations (9.33) in the form

Rαβ = 8πG(Tαβ − 1
2δ
α
βT

γ
γ) , (11.34)

one sees that one particular linear combination of the Einstein equations now takes the

form

h′(r) = 4πG rf(r)−1(T rr − T tt) . (11.35)

The remaining independent component (in the time-independent case) can be chosen

to be

Rtt − 1
2R = 8πG T tt (11.36)

which, after a bit of algebra with the formulae (11.18), works out to be

[r(f(r) − 1)]′ = 8πG r2T tt . (11.37)

This suggests that one trades f(r) for another function

r(f(r) − 1) = −2m(r) ⇔ f(r) = 1 − 2m(r)/r (11.38)

so that (11.37) becomes

m′(r) = 4πG r2(−T tt) . (11.39)
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Equations (11.35) and (11.39) make it as manifest as possible that the spherically sym-

metric vacuum solution is the Schwarzschild metric with f(r) = 1− 2m/r, m constant,

and h(r) = 0 (an arbitrary constant can be absorbed into the definition of the time-

coordinate t).

Let us therefore now, in the time-dependent case, and with the benefit of the above

hindsight, parametrise the two arbitrary functions A(t, r) and B(t, r) in (11.30) in terms

of two other functions h(t, r) and either f(t, r) or m(t, r) by the substitution

A(t, r) = e2h(t, r)f(t, r) B(t, r) = f(t, r)−1

f(t, r) = 1 − 2m(t, r)

r
.

(11.40)

In this gauge, the full (non-vacuum) Einstein equations turn out to take a particuarly

simple and useful form. The previously obtained equations (11.35) and (11.39) continue

to be valid also in the time-dependent case, and there is now one more independent

equation, arising from, say, the (rt)-component of the Einstein equation. This set of

three equations is (a dot now denotes a t-derivative, a prime as before an r-derivative)

m′(t, r) = 4πG r2(−T tt)
ṁ(t, r) = 4πG r2(−T rt)
h′(t, r) = 4πG rf(t, r)−1(−T tt + T rr) .

(11.41)

For vacuum solutions these equations immediately imply that the mass functionm(t, r) =

m is a constant and that h′(t, r) = 0 so that h = h(t) is an arbitrary function of t. Thus

h, which only appears in the (tt)-component of the metric, can simply be absorbed into

a redefinition of t and we can, without loss of generality, assume that h = 0. Thus we

uniquely recover the Schwarzschild solution, even without having to assume from the

outset that the metric is time-independent. This is Birkhoff’s theorem.

Moreover, since T tt is (minus) the energy density and T rt represents the radial energy

flux, the above equations show that m(t, r) can inded be interpreted as the mass or

energy of the solution.

Finally, note that the characteristic form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (11.42)

of the Schwarzschild solution is implied not just by the vacuum Einstein equations

but, more generally, by the Einstein equations with T tt = T rr. This situation is not as

uncommon as one may think. For example, solutions of the Einstein-Maxwell equa-

tions for spherically symmetric electrically charged stars, even with the inclusion of a

cosmological constant, turn out to also be of this form.2

2For some further reflections on the ubiquity of such solutions, see T. Jacobson, When is gttgrr = −1?,

arXiv:0707.3222v3 [gr-qc].
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11.5 Basic Properties of the Schwarzschild Metric - the Schwarzschild

Radius

The metric we have obtained is quite remarkable in several respects. As mentioned

before, the vacuum Einstein equations imply that an isotropic metric is static. Fur-

thermore, the metric contains only a single constant of integration, the mass M . This

implies that the metric in the exterior of a spherical body is completely independent of

the composition of that body. Whatever the energy-momentum tensor for a star may

be, the field in the exterior of the star has always got the form (11.24). This consid-

erably simplifies the physical interpretation of General Relativity. In particular, in the

subsequent discussion of tests of General Relativity, which only involve the exterior of

stars like the sun, we do not have to worry about solutions for the interior of the star

and how those could be patched to the exterior solutions.

Let us take a look at the range of coordinates in the Schwarzschild metric. Clearly, t

is unrestricted, −∞ < t < ∞, and the polar coordinates θ and φ have their standard

range. However, the issue regarding r is more interesting. First of all, the metric is

a vacuum metric. Thus, if the star has radius r0, then the solution is only valid for

r > r0. However, (11.26) also shows that the metric appears to have a singularity at

the Schwarzschild radius rS , given by

rS =
2GM

c2
= 2m . (11.43)

Thus, for the time being we will also require r > rS . Now, in practice the radius of a

physical object is almost always much larger than its Schwarzschild radius. For example,

for a proton, for the earth and for the sun one has approximately

Mproton ∼ 10−24 g ⇒ rS ∼ 2, 5 × 10−52 cm ≪ r0 ∼ 10−13cm

Mearth ∼ 6 × 1027 g ⇒ rS ∼ 1 cm ≪ r0 ∼ 6000km

Msun ∼ 2 × 1033 g ⇒ rS ∼ 3 km ≪ r0 ∼ 7 × 105km . (11.44)

However, for more compact objects, their radius can approach that of their Schwarzschild

radius. For example, for neutron stars one can have rS ∼ 0.1r0, and it is an interesting

question (we will take up again later on) what happens to an object whose size is equal

to or smaller than its Schwarzschild radius.

One thing that does not occur at rS , however, in spite of what (11.26) may suggest,

is a singularity. The singularity in (11.26) is a pure coordinate singularity, an artefact

of having chosen a poor coordinate system. One can already see from the metric in

isotropic form that in these new coordinates there is no singularity at the Schwarzschild

radius, given by ρ = MG/2 in the new coordinates. It is true that g00 vanishes at

that point, but we will later on construct coordinates in which the metric is completely

regular at rS . The only true singularity of the Schwarzschild metric is at r = 0, but there
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the solution was not meant to be valid anyway, so this is not a problem. Nevertheless, as

we will see later, something interesting does happen at r = rS , even though there is no

singularity and e.g. geodesics are perfectly well behaved there: rS is an event-horizon,

in a sense a point of no return. Once one has passed the Schwarzschild radius of an

object with r0 < rS , there is no turning back, not on geodesics, but also not with any

amount of acceleration.

11.6 Measuring Length and Time in the Schwarzschild Metric

In order to learn how to visualise the Schwarzschild metric (for r > r0 > rS), we will

discuss some basic properties of length and time in the Schwarzschild geometry.

Let us first consider proper time for a stationary observer, i.e. an observer at rest at

fixed values of (r, θ, φ). Proper time is related to coordinate time by

dτ = (1 − 2m/r)1/2dt < dt . (11.45)

Thus clocks go slower in a gravitational field - something we already saw in the discussion

of the gravitational red-shift, and also in the discussion of the so-called ‘twin-paradox’:

it is this fact that makes the accelerating twin younger than his unaccelerating brother

whose proper time would be dt. This formula again suggests that something interesting

is happening at the Schwarzschild radius r = 2m - we will come back to this below.

As regards spatial length measurements, thus dt = 0, we have already seen above that

the slices r = const. have the standard two-sphere geometry. However, as r varies, these

two-spheres vary in a way different to the way concentric two-spheres vary in R
3. To see

this, note that the proper radius R, obtained from the spatial line element by setting

θ = const., φ = const, is

dR = (1 − 2m/r)−1/2dr > dr . (11.46)

In other words, the proper radial distance between concentric spheres of area 4πr2 and

area 4π(r + dr)2 is dR > dr and hence larger than in flat space. Note that dR → dr

for r → ∞ so that, as expected, far away from the origin the space approximately looks

like R
3. One way to visualise this geometry is as a sort of throat or sink, as in Figure 9.

To get some more quantitative feeling for the distortion of the geometry produced by

the gravitational field of a star, consider a long stick lying radially in this gravitational

field, with its endpoints at the coordinate values r1 > r2. To compute its length L, we

have to evaluate

L =

∫ r1

r2

dr(1 − 2m/r)−1/2 . (11.47)

It is possible to evaluate this integral in closed form (by changing variables from r to

u = 1/r), but for the present purposes it will be enough to treat 2m/r as a small
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Sphere of radius r+dr

dr

dR > dr

Sphere of radius r

Figure 9: Figure illustrating the geometry of the Schwarzschild metric. In R
3, concentric

spheres of radii r and r + dr are a distance dr apart. In the Schwarzschild geometry,

such spheres are a distance dR > dr apart. This departure from Euclidean geometry

becomes more and more pronounced for smaller values of r, i.e. as one travels down the

throat towards the Schwarzschild radius r = 2m.
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perturbation and to only retain the term linear in m in the Taylor expansion. Then we

find

L ≈
∫ r1

r2

dr(1 +m/r) = (r1 − r2) +m log
r1
r2
> (r1 − r2) . (11.48)

We see that the corrections to the Euclidean result are suppressed by powers of the

Schwarzschild radius rS = 2m so that for most astronomical purposes one can simply

work with coordinate distances!
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12 Particle and Photon Orbits in the Schwarzschild Geometry

We now come to the heart of the matter, the study of planetary orbits and light rays

in the gravitational field of the sun, i.e. the properties of timelike and null geodesics of

the Schwarzschild geometry. We shall see that, by once again making good use of the

symmetries of the problem, we can reduce the geodesic equations to a single first order

differential equation in one variable, analogous to that for a one-dimensional particle

moving in a particular potential. Solutions to this equation can then readily be discussed

qualitatively and also quantitatively (analytically).

12.1 From Conserved Quantities to the Effective Potential

A convenient starting point in general for discussing geodesics is, as I stressed before,

the Lagrangian L = gµν ẋ
µẋν . For the Schwarzschild metric this is

L = −(1 − 2m/r)ṫ2 + (1 − 2m/r)−1ṙ2 + r2(θ̇2 + sin2 θφ̇2) , (12.1)

where 2m = 2MG/c2. Rather than writing down and solving the (second order) geodesic

equations, we will make use of the conserved quantities Kµẋ
µ associated with Killing

vectors. After all, conserved quantities correspond to first integrals of the equations of

motion and if there are a sufficient number of them (there are) we can directly reduce

the second order differential equations to first order equations.

So, how many Killing vectors does the Schwarzschild metric have? Well, since the

metric is static, there is one timelike Killing vector, namely ∂/∂t, and since the metric

is spherically symmetric, there are spatial Killing vectors generating the Lie algebra of

SO(3), hence there are three of those, and therefore all in all four Killing vectors.

Now, since the gravitational field is isotropic (and hence there is conservation of angular

momentum), the orbits of the particles or planets are planar. Without loss of generality,

we can choose our coordinates in such a way that this plane is the equatorial plane

θ = π/2, so in particular θ̇ = 0, and the residual Lagrangian to deal with is

L′ = −(1 − 2m/r)ṫ2 + (1 − 2m/r)−1ṙ2 + r2φ̇2 . (12.2)

This choice fixes the direction of the angular momentum (to be orthogonal to the plane)

and leaves two conserved quantities, the energy (per unit rest mass) E and the mag-

nitude L (per unit rest mass) of the angular momentum, corresponding to the cyclic

variables t and φ, (or: corresponding to the Killing vectors ∂/∂t and ∂/∂φ),

∂L
∂t

= 0 ⇒ d

dτ

∂L
∂ṫ

= 0

∂L
∂φ

= 0 ⇒ d

dτ

∂L
∂φ̇

= 0 , (12.3)
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namely

E = (1 − 2m/r)ṫ (12.4)

L = r2 sin2 θφ̇ = r2φ̇ . (12.5)

Calling L the angular momentum (per unit rest mass) requires no further justification,

but let me pause to explain in what sense E is an energy (per unit rest mass). On the

one hand, it is the conserved quantity (2.45) associated to time-translation invariance.

As such, it certainly deserves to be called the energy.

But it is moreoever true that for a particle at infinity (r → ∞) E is just the special

relativistic energy E = γ(v∞)c2, with γ(v) = (1 − v2/c2)−1/2 the usual relativistic γ-

factor, and v∞ the coordinate velocity dr/dt at infinity. This can be seen in two ways.

First of all, for a particle that reaches r = ∞, the constant E can be determined by

evaluating it at r = ∞. It thus follows from the definition of E that

E = ṫ∞ . (12.6)

In Special Relativity, the relation between proper and coordinate time is given by (set-

ting c = 1 again)

dτ =
√

1 − v2dt ⇒ ṫ = γ(v) , (12.7)

suggesting the identification

E = γ(v∞) (E = γ(v∞)c2 if c 6= 1) (12.8)

Another argument for this identification will be given below, once we have introduced

the effective potential.

As we have seen in section 2.1 (and again in section 4.8), there is also always one more

integral of the geodesic equation (corresponding roughly speaking to parametrisation

invariance of the Lagrangian), namely L itself,

d

dτ
L = 2gµν ẋ

µ D

Dτ
ẋν = 0 . (12.9)

Thus we set

L = ǫ , (12.10)

where ǫ = −1 for timelike geodesics and ǫ = 0 for null geodesics. Thus we have

−(1 − 2m/r)ṫ2 + (1 − 2m/r)−1ṙ2 + r2φ̇2 = ǫ , (12.11)

and we can now express ṫ and φ̇ in terms of the conserved quantities E and L to obtain

a first order differential equation for r alone, namely

−(1 − 2m/r)−1E2 + (1 − 2m/r)−1ṙ2 +
L2

r2
= ǫ . (12.12)
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Multiplying by (1 − 2m/r)/2 and rearranging the terms, one obtains

E2 + ǫ

2
=
ṙ2

2
+ ǫ

m

r
+
L2

2r2
− mL2

r3
. (12.13)

Now this equation is of the familiar Newtonian form

Eeff =
ṙ2

2
+ Veff (r) , (12.14)

with

Eeff =
E2 + ǫ

2

Veff (r) = ǫ
m

r
+
L2

2r2
− mL2

r3
, (12.15)

describing the energy conservation in an effective potential. Except for t → τ , this is

exactly the same as the Newtonian equation of motion in a potential

V (r) = ǫ
m

r
− mL2

r3
, (12.16)

the effective angular momentum term L2/r2 = r2φ̇2 arising, as usual, from the change

to polar coordinates.

In particular, for ǫ = −1, the general relativistic motion (as a function of τ) is exactly

the same as the Newtonian motion (as a function of t) in the potential

ǫ = −1 ⇒ V (r) = −m
r

− mL2

r3
. (12.17)

The first term is just the ordinary Newtonian potential, so the second term is appar-

ently a general relativistic correction. We will later on treat this as a perturbation but

note that the above is an exact result, not an approximation (so, for example, there

are no higher order corrections proportional to higher powers of m/r). We expect ob-

servable consequences of this general relativistic correction because many properties of

the Newtonian orbits (Kepler’s laws) depend sensitively on the fact that the Newtonian

potential is precisely ∼ 1/r.

Looking at the equation for ǫ = −1,

1
2 ṙ

2 + Veff (r) = 1
2(E2 − 1) (12.18)

and noting that Veff (r) → 0 for r → ∞, we can read off that for a particle that reaches

r = ∞ we have the relation

ṙ2∞ = E2 − 1 . (12.19)

This implies, in particular, that for such (scattering) trajectories one necessarily has

E ≥ 1, with E = 1 corresponding to a particle initially or finally at rest at infinity. For

E > 1 the coordinate velocity at infinity can be computed from

v2
∞ =

ṙ2∞
ṫ2∞

. (12.20)
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Using (12.6) and (12.19), one finds

v2
∞ =

E2 − 1

E2
⇔ E = (1 − v2

∞)−1/2 , (12.21)

thus confirming the result claimed in (12.8).

For null geodesics, on the other hand, the Newtonian part of the potential is zero, as one

might expect for massless particles, but in General Relativity a photon feels a non-trivial

potential

ǫ = 0 ⇒ V (r) = −mL
2

r3
. (12.22)

12.2 The Equation for the Shape of the Orbit

Typically, one is primarily interested in the shape of an orbit, that is in the radius

r as a function of φ, r = r(φ), rather than in the dependence of, say, r on some

extraterrestrial’s proper time τ . In this case, the above mentioned difference between t

(in the Newtonian theory) and τ (here) is irrelevant: In the Newtonian theory one uses

L = r2dφ/dt to express t as a function of φ, t = t(φ) to obtain r(φ) from r(t). In General

Relativity, one uses the analogous equation L = r2dφ/dτ to express τ as a function of φ,

τ = τ(φ). Hence the shapes of the General Relativity orbits are precisely the shapes of

the Newtonian orbits in the potential (12.16). Thus we can use the standard methods

of Classical Mechanics to discuss these general relativistic orbits and of course this

simplifies matters considerably.

To obtain r as a function of φ we proceed as indicated above. Thus we use
(
dr

dφ

)2

=
ṙ2

φ̇2
(12.23)

to combine (12.14),

ṙ2 = 2Eeff − 2Veff (r) , (12.24)

and (12.5),

φ̇2 =
L2

r4
(12.25)

into
r′2

r4
L2 = 2Eeff − 2Veff (r) (12.26)

where a prime denotes a φ-derivative.

In the examples to be discussed below, we will be interested in the angle ∆φ swept out

by the object in question (a planet or a photon) as it travels along its trajectory between

the farthest distance r2 from the star (sun) (r2 = ∞ for scattering trajectories) and the

position of closest approach to the star r1 (the perihelion or, more generally, if we are

not talking about our own solar system, periastron), and back again,

∆φ = 2

∫ r2

r1

dφ

dr
dr . (12.27)
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In the Newtonian case, these integrals can be evaluated in closed form. With the

general relativistic correction term, however, these are elliptic integrals which can not

be expressed in closed form. A perturbative evaluation of these integrals (treating

the exact general relativistic correction as a small perturbation) also turns out to be

somewhat delicate since e.g. the limits of integration depend on the perturbation.

It is somewhat simpler to deal with this correction term not at the level of the solution

(integral) but at the level of the corresponding differential equation. As in the Kepler

problem, it is convenient to make the change of variables

u =
1

r
u′ = − r′

r2
. (12.28)

Then (12.26) becomes

u′2 = L−2(2Eeff − 2Veff (r)) . (12.29)

Upon inserting the explicit expression for the effective potential, this becomes

u′2 + u2 =
E2 + ǫ

L2
− 2ǫm

L2
u+ 2mu3 . (12.30)

This can be used to obtain an equation for dφ(u)/du = u′−1, leading to

∆φ = 2

∫ u1

u2

dφ

du
du . (12.31)

Differentiating (12.30) once more, one finds

u′(u′′ + u) = u′(−ǫm
L2

+ 3mu2) . (12.32)

Thus either u′ = 0, which corresponds to a circular, constant radius, orbit and is

irrelevant since neither the planets nor the photons of interest to us travel on circular

orbits, or

u′′ + u = −ǫm
L2

+ 3mu2 . (12.33)

This is the equation that we will study below to determine the perihelion shift and the

bending of light by a star. In the latter case, which is a bit simpler, I will also sketch

two other derivations of the result, based on different perturbative evaluations of the

elliptic integral.

12.3 Timelike Geodesics

We will first try to gain a qualititative understanding of the behaviour of geodesics in

the effective potential

Veff (r) = −m
r

+
L2

2r2
− mL2

r3
. (12.34)

The standard way to do this is to plot this potential as a function of r for various values

of the parameters L and m. The basic properties of Veff (r) are the following:
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1. Asymptotically, i.e. for r → ∞, the potential tends to the Newtonian potential,

Veff (r)
r→∞−→ −m

r
. (12.35)

2. At the Schwarzschild radius rS = 2m, nothing special happens and the potential

is completely regular there,

Veff (r = 2m) = −1

2
. (12.36)

For the discussion of planetary orbits in the solar system we can safely assume

that the radius of the sun is much larger than its Schwarzschild radius, r0 ≫ rS ,

but the above shows that even for these highly compact objects with r0 < rS

geodesics are perfectly regular as one approaches rS. Of course the particular

numerical value of Veff (r = 2m) has no special significance because V (r) can

always be shifted by a constant.

3. The extrema of the potential, i.e. the points at which dVeff/dr = 0, are at

r± = (L2/2m)[1 ±
√

1 − 12(m/L)2] , (12.37)

and the potential has a maximum at r− and a local minimum at r+. Thus there

are qualitative differences in the shapes of the orbits between L/m <
√

12 and

L/m >
√

12.

Let us discuss these two cases in turn. When L/m <
√

12, then there are no critical

points and the potential looks approximately like that in Figure 10. Note that we

should be careful with extrapolating to values of r with r < 2m because we know that

the Schwarzschild metric has a coordinate singularity there. However, qualitatively the

picture is also correct for r < 2m.

From this picture we can read off that there are no bounded orbits for these values

of the parameters. Any inward bound particle with L <
√

12m will continue to fall

inwards (provided that it moves on a geodesic). This should be contrasted with the

Newtonian situation in which for any L 6= 0 there is always the centrifugal barrier

reflecting incoming particles since the repulsive term L2/2r2 will dominate over the

attractive −m/r for small values of r. In General Relativity, on the other hand, it is

the attractive term −mL2/r3 that dominates for small r.

Fortunately for the stability of the solar system, the situation is qualitatively quite

different for sufficiently large values of the angular momentum, namely L >
√

12m (see

Figure 11).

In that case, there is a minimum and a maximum of the potential. The critical radii

correspond to exactly circular orbits, unstable at r− (on top of the potential) and stable

at r+ (the minimum of the potential). For L →
√

12m these two orbits approach each
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r

V    (r)eff

|
2m

_-1/2

Figure 10: Effective potential for a massive particle with L/m <
√

12. The extrapolation

to values of r < 2m has been indicated by a dashed line.

other, the critical radius tending to r± → 6m. Thus the innermost stable circular orbit

(known affectionately as the ISCO in astrophysics) is located at

rISCO = 6m . (12.38)

On the other hand, for very large values of L the critical radii are (expand the square

root to first order) to be found at

(r+, r−)
L→∞−→ (L2/m, 3m) . (12.39)

For given L, for sufficiently large values of Eeff a particle will fall all the way down

the potential. For Eeff < 0, there are bound orbits which are not circular and which

range between the radii r1 and r2, the turning points at which ṙ = 0 and therefore

Eeff = Veff (r).

12.4 The Anomalous Precession of the Perihelia of the Planetary Orbits

Because of the general relativistic correction ∼ 1/r3, the bound orbits will not be closed

(elliptical). In particular, the position of the perihelion, the point of closest approach

of the planet to the sun where the planet has distance r1, will not remain constant.

However, because r1 is constant, and the planetary orbit is planar, this point will move

on a circle of radius r1 around the sun.

As described in section 12.2, in order to calculate this perihelion shift one needs to

calculate the total angle ∆φ swept out by the planet during one revolution by integrating
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V    (r)eff

_-1/2

r
|

2m
+

r-

r1 r2

E

r

Figure 11: Effective potential for a massive particle with L/m >
√

12. Shown are the

maximum of the potential at r− (an unstable circular orbit), the minimum at r+ (a

stable circular orbit), and the orbit of a particle with Eeff < 0 with turning points r1

and r2.
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this from r1 to r2 and back again to r1, or

∆φ = 2

∫ r2

r1

dφ

dr
dr . (12.40)

Rather than trying to evaluate the above integral via some sorcery, we will determine

∆φ by analysing the orbit equation (12.33) for ǫ = −1,

u′′ + u =
m

L2
+ 3mu2 . (12.41)

In the Newtonian approximation, this equation reduces to that of a displaced harmonic

oscillator,

u′′0 + u0 =
m

L2
⇔ (u0 −m/L2)′′ + (u0 −m/L2) = 0 , (12.42)

and the solution is a Kepler ellipse described parametrically by

u0(φ) =
m

L2
(1 + e cosφ) (12.43)

where e is the eccentricity (e = 0 means constant radius and hence a circular orbit).

Plugging this back into the Newtonian non-linear 1st-order equation (cf. (12.30))

u′0
2 + u2

0 =
E2 − 1

L2
+

2m

L2
u0 , (12.44)

one finds that the integration constant e is related to the energy by

e2 = 1 +
L2

m2
(E2 − 1) = 1 +

2L2

m2
Eeff . (12.45)

In particular, e2 < 1 for bound states (bounded orbits) with Eeff < 0, and we will

concentrate on these orbits. The perihelion (aphelion) is then at φ = 0 (φ = π), with

r1,2 =
L2

m

1

1 ± e
. (12.46)

Thus the semi-major axis a of the ellipse,

2a = r1 + r2 , (12.47)

is

a =
L2

m

1

1 − e2
. (12.48)

In particular, in the Newtonian theory, one has

(∆φ)0 = 2π . (12.49)

The anomalous perihelion shift due to the effects of General Relativity is thus

δφ = ∆φ− 2π . (12.50)
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In order to determine δφ, we now seek a solution to (12.41) of the form

u = u0 + u1 (12.51)

where u1 is a small deviation. This leads to the equation

u′′1 + u1 = 3mu2
0 . (12.52)

The general solution of this inhomogenous differential equation is the general solution

of the homogeneous equation (we are not interested in) plus a special solution of the

inhomogeneous equation. Writing

(1 + e cos φ)2 = (1 + 1
2e

2) + 2e cos φ+ 1
2e

2 cos 2φ (12.53)

and noting that

(φ sinφ)′′ + φ sinφ = 2cos φ

(cos 2φ)′′ + cos 2φ = −3 cos 2φ (12.54)

one sees that a special solution is

u1(φ) =
3m3

L4
((1 + 1

2e
2) − 1

6e
2 cos 2φ+ eφ sinφ) . (12.55)

The term of interest to us is the third term which provides a cumulative non-periodic

effect over successive orbits. Focussing on this term, we can write the approximate

solution to the orbit equation as

u(φ) ≈ m

L2
(1 + e cosφ+

3m2e

L2
φ sinφ) . (12.56)

If the first perihelion is at φ = 0, the next one will be at a point ∆φ = 2π+ δφ close to

2π which is such that u′(∆φ) = 0 or

sin δφ =
3m2

L2
(sin δφ + (2π + δφ) cos δφ) . (12.57)

Using that δφ is small, and keeping only the lowest order terms in this equation, one

finds the result

δφ =
6πm2

L2
= 6π(

GM

cL
)2 . (12.58)

An alternative way to obtain this result is to observe that (12.56) can be approximately

written as

u(φ) ≈ m

L2

(
1 + e cos[(1 − 3m2

L2
)φ]

)
(12.59)

From this equation it is manifest that during each orbit the perihelion advances by

δφ = 2π
3m2

L2
(12.60)
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(2π(1 − 3m2/L2)(1 + 3m2/L2) ≈ 2π) in agreement with the above result.

In terms of the eccentricity e and the semi-major axis a (12.48) of the elliptical orbit,

this can be written as

δφ =
6πG

c2
M

a(1 − e2)
. (12.61)

As these parameters are known for the planetary orbits, δφ can be evaluated. For

example, for Mercury, where this effect is largest (because it has the largest eccentricity)

one finds δφ = 0, 1′′ per revolution. This is of course a tiny effect (1 second, 1′′, is one

degree divided by 3600) and not per se detectable. However,

1. this effect is cumulative, i.e. after N revolutions one has an anomalous perihelion

shift Nδφ;

2. Mercury has a very short solar year, with about 415 revolutions per century;

3. and accurate observations of the orbit of Mercury go back over 200 years.

Thus the cumulative effect is approximately 850δφ and this is sufficiently large to be

observable. The prediction of General Relativity for this effect is

δφGR = 43, 03′′/century . (12.62)

And indeed such an effect is observed (and had for a long time presented a puzzle,

an anomaly, for astronomers). In actual fact, the perihelion of Mercury’s orbit shows a

precession rate of 5601′′ per century, so this does not yet look like a brilliant confirmation

of General Relativity. However, of this effect about 5025′′ are due to fact that one is

using a non-inertial geocentric coordinate system (precession of the equinoxes). 532′′

are due to perturbations of Mercury’s orbit caused by the (Newtonian) gravitational

attraction of the other planets of the solar system (chiefly Venus, earth and Jupiter).

This much was known prior to General Relativity and left an unexplained anomalous

perihelion shift of

δφanomalous = 43, 11′′ ± 0, 45′′/century . (12.63)

Now the agreement with the result of General Relativity is truly impressive and this

is one of the most important experimental verifications of General Relativity. Other

observations, involving e.g. the mini-planet Icarus, discovered in 1949, with a huge

eccentricity e ∼ 0, 827, or binary pulsar systems, have provided further confirmation of

the agreement between General Relativity and experiment.

12.5 Null Geodesics

To study the behaviour of massless particles (photons) in the Schwarzschild geometry,

we need to study the effective potential

Veff (r) =
L2

2r2
− mL2

r3
=

L2

2r2
(1 − 2m

r
) . (12.64)
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rr=2m r=3m

V    (r)eff

Figure 12: Effective potential for a massless particle. Displayed is the location of the

unstable circular orbit at r = 3m. A photon with an energy E2 < L2/27m2 will be

deflected (lower arrow), photons with E2 > L2/27m2 will be captured by the star.

The following properties are immediate:

1. For r > 2m, the potential is positive, V (r) > 0.

2. For r → ∞, one has Veff (r) → 0.

3. Veff (r = 2m) = 0.

4. When L = 0, the photons feel no potential at all.

5. There is one critical point of the potential, at r = 3m, with Veff (r = 3m) =

L2/54m2.

Thus the potential has the form sketched in Figure 12.

For energies E2 > L2/27m2, photons are captured by the star and will spiral into it.

For energies E2 < L2/27m2, on the other hand, there will be a turning point, and light

rays will be deflected by the star. As this may sound a bit counterintuitive (shouldn’t
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a photon with higher energy be more likely to zoom by the star without being forced

to spiral into it?), think about this in the following way. L = 0 corresponds to a

photon falling radially towards the star, L small corresponds to a slight deviation from

radial motion, while L large (thus φ̇ large) means that the photon is travelling along a

trajectory that will not bring it very close to the star at all (see the next subsection for

the precise relation between the angular momentum L and the impact parameter b of

the photon). It is then not surprising that photons with small L are more likely to be

captured by the star (this happens for L2 < 27m2E2) than photons with large L which

will only be deflected in their path.

We will study this in more detail below. But let us first also consider the opposite

situation, that of light from or near the star (and we are of course assuming that

r0 > rS). Then for r0 < 3m and E2 < L2/27m2, the light cannot escape to infinity

but falls back to the star, whereas for E2 > L2/27m2 light will escape. Thus for a path

sufficiently close to radial (L small, because φ̇ is then small) light can always escape as

long as r > 2m.

The existence of one unstable circular orbit for photons at r = 3m (the photon sphere),

while not relevant for the applications to the solar system in this section, turns out to be

of some interest in black hole astrophysics (as a possibly observable signature of black

holes).

12.6 The Bending of Light by a Star: 3 Derivations

To study the bending of light by a star, we consider an incoming photon (or light ray)

with impact parameter b (see Figure 13) and we need to calculate φ(r) for a trajectory

with turning point at r = r1. At that point we have ṙ = 0 (the dot now indicates

differentiation with respect to the affine parameter σ of the null geodesic, we can but

need not choose this to be the coordinate time t) and therefore r1 is determined by

Eeff = Veff (r1) ⇔ r21 =
L2

E2
(1 − 2m

r1
) . (12.65)

The first thing we need to establish is the relation between b and the other parameters

E and L. Consider the ratio
L

E
=

r2φ̇

(1 − 2m/r)ṫ
. (12.66)

For large values of r, r ≫ 2m, this reduces to

L

E
= r2

dφ

dt
. (12.67)

On the other hand, for large r we can approximate b/r = sinφ by φ. Since we also have

dr/dt = −1 (for an incoming light ray), we deduce

L

E
= r2

d

dt

b

r
= b . (12.68)
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In terms of the variable u = 1/r the equation for the shape of the orbit (12.33) is

u′′ + u = 3mu2 (12.69)

and the elliptic integral (12.31) for ∆φ is

∆φ = 2

∫
∞

r1

dφ

dr
dr = 2

∫ u1

0
du [b−2 − u2 + 2mu3]−1/2 . (12.70)

Moreover, in terms of u we can write the equation (12.65) for u1 = 1/r1 as

b−2 = u2
1 − 2mu3

1 . (12.71)

In the absence of the general relativistic correction (calling this ‘Newtonian’ is perhaps

not really appropriate since we are dealing with photons/light rays) one has b−1 = u1

or b = r1 (no deflection). The orbit equation

u′′0 + u0 = 0 (12.72)

has the solution

u0(φ) =
1

b
sinφ , (12.73)

describing the straight line

r0(φ) sin φ = b . (12.74)

Obligingly the integral gives

(∆φ)0 = 2

∫ 1

0
dx(1 − x2)−1/2 = 2arcsin 1 = π . (12.75)

Thus the deflection angle is related to ∆φ by

δφ = ∆φ− π . (12.76)

We will now determine δφ in three different ways,

• by perturbatively solving the orbit equation (12.69);

• by perturbatively evaluating the elliptic integral (12.70);

• by performing a perturbative expansion (linearisation) of the Schwarzschild met-

ric.

Derivation I: Perturbative Solution of the Orbit Equation

In order to solve the orbit equation (12.69), we proceed as in section 12.4. Thus the

equation for the (small) deviation u1(φ) is

u′′1 + u1 = 3mu2
0 =

3m

b2
(1 − cos2 φ) =

3m

2b2
(1 − cos 2φ) (12.77)
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which has the particular solution (cf. (12.54))

u1(φ) =
3m

2b2
(1 + 1

3 cos 2φ) . (12.78)

Therefore

u(φ) =
1

b
sinφ+

3m

2b2
(1 + 1

3 cos 2φ) . (12.79)

By considering the behaviour of this equation as r → ∞ or u→ 0, one finds an equation

for (minus) half the deflection angle, namely

1

b
(−δφ/2) +

3m

2b2
4

3
= 0 , (12.80)

leading to the result

δφ =
4m

b
=

4MG

bc2
. (12.81)

Derivation II: Perturbative Evaluation of the Elliptic Integral

The perturbative evaluation of (12.70) is rather tricky when it is regarded as a function

of the independent variables m and b, with r1 determined by (12.65) (try this!). The

trick to evaluate (12.70) is (see R. Wald, General Relativity) to regard the integral as

a function of the independent variables r1 and m, with b eliminated via (12.71). Thus

(12.70) becomes

∆φ = 2

∫ u1

0
du [u2

1 − u2 − 2m(u3
1 − u3)]−1/2 . (12.82)

The first order correction

∆φ = (∆φ)0 +m(∆φ)1 + O(m2) (12.83)

is therefore

(∆φ)1 =

(
∂

∂m
∆φ

)

m=0

= 2

∫ b−1

0
du

b−3 − u3

(b−2 − u2)3/2
. (12.84)

This integral is elementary,

∫
dx

1 − x3

(1 − x2)3/2
= −(x+ 2)

(
1 − x

1 + x

)1/2

, (12.85)

and thus

(∆φ)1 = 4b−1 , (12.86)

leading to

δφ =
4m

b
=

4MG

bc2
, (12.87)

in agreement with the result (12.81) obtained above.

Derivation III: Linearising the Schwarzschild Metric
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b r1

delta phi
Delta phi

Figure 13: Bending of light by a star. Indicated are the definitions of the impact

parameter b, the perihelion r1, and of the angles ∆φ and δφ.

It is instructive to look at the second derivation from another point of view. As we

will see, in some sense this derivation ‘works’ because the bending of light is accu-

rately described by the linearised solution, i.e. by the metric that one obtains from the

Schwarzschild metric by the approximation

A(r) = 1 − 2m

r
→ 1 − 2m

r

B(r) = (1 − 2m

r
)−1 → 1 +

2m

r
. (12.88)

I will only sketch the main steps in this calculation, so you should think of this subsection

as an annotated exercise.

First of all, redoing the analysis of sections 12.1 and 12.2 for a general spherically

symmetric static metric (11.5),

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2) , (12.89)

it is easy to see that the orbit equation can be written as

B(r)
r′2

r4
+

1

r2
=

ǫ

L2
+

E2

L2A(r)
(12.90)

or, in terms of u = 1/r, as

Bu′2 + u2 =
ǫ

L2
+

E2

L2A(u)
. (12.91)

168



We will concentrate on the lightlike case ǫ = 0,

Bu′2 + u2 =
E2

L2A(u)
, (12.92)

and express the impact parameter b = L/E in terms of the turning point r1 = 1/u1 of

the trajectory. At this turning point, u′ = 0, and thus

E2

L2
= A(u1)u

2
1 , (12.93)

leading to

Bu′2 =
A(u1)

A(u)
u2

1 − u2 . (12.94)

We thus find
dφ

du
= ±B(u)1/2

[
A(u1)

A(u)
u2

1 − u2

]−1/2

. (12.95)

For the (linearised) Schwarzschild metric the term in square brackets is

A(u1)

A(u)
u2

1 − u2 = u2
1(1 + 2m(u− u1)) − u2

= (u2
1 − u2)(1 − 2m

u2
1

u1 + u
) . (12.96)

Using this and the approximate (linearised) value for B(u),

B(u) ≈ 1 + 2mu (12.97)

one finds that dφ/du is given by

dφ

du
= ±B(u)1/2

[
(u2

1 − u2)(1 − 2m
u2

1

u1 + u
)

]−1/2

≈ (u2
1 − u2)−1/2

(
1 +m(

u2
1

u1 + u
+ u)

)

= (u2
1 − u2)−1/2 +m

u3
1 − u3

(u2
1 − u2)3/2

. (12.98)

The first term now gives us the Newtonian result and, comparing with Derivation II,

we see that the second term agrees precisely with the integrand of (12.84) with b→ r1

(which, in a term that is already of order m, makes no difference). We thus conclude

that the deflection angle is, as before,

δφ = 2

∫ u1

0
du m

u3
1 − u3

(u2
1 − u2)3/2

= 4mu1 ≈ 4m

b
. (12.99)

This effect is physically measurable and was one of the first true tests of Einstein’s new

theory of gravity. For light just passing the sun the predicted value is

δφ ∼ 1, 75′′ . (12.100)
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Experimentally this is a bit tricky to observe because one needs to look at light from

distant stars passing close to the sun. Under ordinary circumstances this would not

be observable, but in 1919 a test of this was performed during a total solar eclipse, by

observing the effect of the sun on the apparent position of stars in the direction of the

sun. The observed value was rather imprecise, yielding 1, 5′′ < δφ < 2, 2′′ which is, if

not a confirmation of, at least consistent with General Relativity.

More recently, it has also been possible to measure the deflection of radio waves by the

gravitational field of the sun. These measurements rely on the fact that a particular

Quasar, known as 3C275, is obscured annually by the sun on October 8th, and the

observed result (after correcting for diffraction effects by the corona of the sun) in this

case is δ = 1, 76′′ ± 0, 02′′.

The value predicted by General Relativity is, interestingly enough, exactly twice the

value that would have been predicted by the Newtonian approximation of the geodesic

equation alone (but the Newtonian approximation is not valid anyway because it applies

to slowly moving objects, and light certainly fails to satisfy this condition). A calculation

leading to this wrong value had first been performed by Soldner in 1801 (!) (by cancelling

the mass m out of the Newtonian equations of motion before setting m = 0) and also

Einstein predicted this wrong result in 1908 (his equivalence principle days, long before

he came close to discovering the field equations of General Relativity now carrying his

name).

This result can be obtained from the above calculation by setting B(u) = 1 instead of

(12.97), as in the Newtonian approximation only g00 is non-trivial. More generally, one

can calculate the deflection angle for a metric with the approximate behaviour

B(u) ≈ 1 + 2γmu , (12.101)

for γ a real parameter, with the result

δφ ≈ 1 + γ

2

4m

b
. (12.102)

This reproduces the previous result for γ = 1, half its value for γ = 0, and checking

to which extent measured deflection angles agree with the theoretical prediction of

general relativity (γ = 1) constitutes an experimental test of general relativity. In this

context γ is known as one of the PPN parameters (PPN for parametrised post-Newtonian

approximation).

12.7 A Unified Description in terms of the Runge-Lenz Vector

The perhaps slickest way to obtain the orbits of the Kepler problem is to make use of the

so-called Runge-Lenz vector. Recall that, due to conservation of angular momentum ~L,

the orbits in any spherically symmetric potential are planar. The bound orbits of the
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Kepler problem, however, have the additional property that they are closed, i.e. that

the perihelion is constant. This suggests that there is a further hidden symmetry in the

Kepler problem, with the position of the perihelion the corresponding conserved charge.

This is indeed the case.

Consider, for a spherically symmetric potential W (r), the vector

~A = ~̇x× ~L+W (r)~x (12.103)

or, in components,

Ai = ǫijkẋjLk +W (r)xi . (12.104)

A straightforward calculation, using the Newtonian equations of motion in the potential

W (r), shows that
d

dt
Ai = (r∂rW (r) +W (r))ẋi . (12.105)

Thus ~A is conserved if and only if W (r) is homogeneous of degree (−1),

d

dt
~A = 0 ⇔ W (r) =

c

r
. (12.106)

In our notation, c = ǫm, and we will henceforth refer to the vector

~A = ~̇x× ~L+
ǫm

r
~x (12.107)

as the Runge-Lenz vector.

It is well known, and easy to see by calculating e.g. the Poisson brackets of suitable linear

combinations of ~L and ~A, that ~A extends the manifest symmetry group of rotations

SO(3) of the Kepler problem to SO(4) for bound orbits and SO(3, 1) for scattering

orbits.

It is straightforward to determine the Keplerian orbits from ~A. While ~A has 3 compo-

nents, the only new information is contained in the direction of ~A, as the norm A of ~A

can be expressed in terms of the other conserved quantities and parameters (energy E,

angular momentum L, mass m) of the problem. In the notation of section 12.1, one has

A2 = E2L2 + ǫ(L2 + ǫm2) . (12.108)

Let us choose the constant direction ~A to be in the direction φ = 0. Then ~A.~x = Ar cosφ

and from (12.107) one finds

Ar cosφ = L2 + ǫmr . (12.109)

Now we consider the two cases ǫ = −1 and ǫ = 0.

For ǫ = −1, (12.109) can be written as

1

r(φ)
=
m

L2
(1 +

A

m
cosφ) . (12.110)
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Comparing with (12.43), we recognise this as the equation for an ellipse with eccentricity

e and semi-major axis a (12.48) given by

e =
A

m

m

L2
=

1

a(1 − e2)
. (12.111)

Moreover, we see that the perihelion is at φ = 0 which establishes that the Runge-Lenz

vector points from the center of attraction to the (constant) position of the perihelion.

During one revolution the angle φ changes from 0 to 2π.

For ǫ = 0 (i.e. no potential), on the other hand, (12.109) reduces to

1

r(φ)
=

A

L2
cosφ (12.112)

This describes a straight line (12.73) with impact parameter

b =
L2

A
=
L

E
. (12.113)

In this case, φ runs from −π/2 to π/2 and the point of closest approach is again at

φ = 0 (distance b).

We see that the Runge-Lenz vector captures precisely the information that in the New-

tonian theory bound orbits are closed and light-rays are not deflected. The Runge-Lenz

vector will no longer be conserved in the presence of the general relativistic correction

to the Newtonian motion, and this non-constancy is a precise measure of the deviation

of the general relativistic orbits from their Newtonian counterparts. As shown e.g. in

an article by Brill and Goel3 this provides a very elegant and quick way of (re-)deriving

the results about perihelion precession and deflection of light in the solar system.

Calculating the time-derivative of ~A (12.107) for a particle moving in the general rela-

tivistic potential (12.16)

V (r) = ǫ
m

r
− mL2

r3
, (12.114)

one finds (of course we now switch from t to τ)

d

dτ
~A =

3m2L2

r2
d

dτ
~n (12.115)

where ~n = ~x/r = (cosφ, sin φ, 0) is the unit vector in the plane θ = π/2 of the orbit.

Thus ~A rotates with angular velocity

ω =
3mL2 cosφ

Ar2
φ̇ . (12.116)

Here A now refers to the norm of the Newtonian Runge-Lenz vector (12.107) calculated

for a trajectory ~x(τ) in the general relativistic potential (12.114). This norm is now no

longer constant,

A2 = E2L2 + ǫ(L2 + ǫm2) +
2mL4

r3
. (12.117)

3D. Brill, D. Goel, Light bending and perihelion precession: A unified approach, Am. J. Phys. 67

(1999) 316, arXiv:gr-qc/9712082
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However, assuming that the change in ~A is small, we obtain an approximate expression

for ω by substituting the unperturbed orbit r0(φ) from (12.109),

r0(φ) =
L2

A cosφ− ǫm
, (12.118)

as well as the unperturbed norm (12.108) in (12.116) to find

ω ≈ 3m

AL2
(A cosφ− ǫm)2 cosφ φ̇ . (12.119)

Now the total change in the direction of ~A when the object moves from φ1 to φ2 can be

calculated from

δφ =

∫ φ2

φ1

ωdτ

=
3m

AL2

∫ φ2

φ1

dφ (A cosφ− ǫm)2 cosφ . (12.120)

For ǫ = −1, and (φ1, φ2) = (0, 2π), this results in (only the cos2 φ-term gives a non-zero

contribution)

δφ = 2π
3m2

L2
=

6πm2

L2
, (12.121)

in precise agreement with (12.58,12.60).

For ǫ = 0, on the other hand, one has

δφ =
3mA

L2

∫ π/2

−π/2
dφ cos3 φ . (12.122)

Using ∫
cos3 φ = sinφ− 1

3 sin3 φ , (12.123)

one finds

δφ =
4mA

L2
=

4m

b
, (12.124)

which agrees precisely with the results of section 12.6.
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13 Black Holes: Approaching and Crossing the Schwarzschild Ra-

dius

So far, we have been considering objects of a size larger (in practice much larger) than

their Schwarzschild radius, r0 > rS. We also noted that the effective potential Veff (r) is

perfectly well behaved at rS . We now consider objects with r0 < rS and try to unravel

some of the bizarre physics that nevertheless occurs when one approaches or crosses

rS = 2m. We will do this in several steps:

• First we will consider observers that don’t quite dare to cross rS and which try to

remain stationary at a fixed value of r close to rS .

• Then we will consider observers that fall freely (and radially) in this geometry,

and describe their voyage both from their point of view and from that of a distant

stationary observer (which will turn out to be quite different).

• Then we will study the geometry of the Schwarzschild metric near r = rS , and

show that the geoemtry is completely non-singular (and is in fact closely related to

the geometry of the Rindler metric for Minkowski space-time discussed in section

1.2).

• These considerations will indicate that (and explain why) the usual Schwarzschild

coordinates (specifically the time-coordinate t) are inadequate for describing the

physics across the radius rS .

• In order to learn more about the region near and beyond r = rS , we next study

the behaviour of lightcones and light rays in this geometry.

• These considerations will then lead us to the introduction of coordinates in which

the Schwarzschild metric is non-singular for all 0 < r < ∞, and then the fun can

begin and we can try to understand what actually happens (and what charac-

terises) r = rS .

13.1 Stationary Observers

Some insight into the Schwarzschild geometry, and the difference between Newtonian

gravity and general relativistic gravity, is provided by looking at stationary observers,

i.e. observers hovering at fixed values of (r, θ, φ). Thus their 4-velocity uα = ẋα has the

form uα = (u0, 0, 0, 0) with u0 > 0. The normalisation uαuα = −1 then implies

uα =

(
1√

1 − 2m/r
, 0, 0, 0

)
. (13.1)
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The worldline of a stationary observer is clearly not a geodesic (that would be the

worldline of an observer freely falling in the gravitational field), and we can calculate

its covariant acceleration (4.61)

aα =
D

Dτ
uα = uβ∇βu

α = (d/dτ)uα + Γαβγu
βuγ . (13.2)

Noting that uα is time-independent, one finds

aα = Γα00(u
0)2 = Γα00(1 − 2m/r)−1 . (13.3)

Thus only ar is non-zero, and one finds

aα = (0,m/r2, 0, 0) . (13.4)

This looks nicely Newtonian, with a force in the radial direction designed to precisely

cancel the gravitational attraction. However, this is a bit misleading since this is a

coordinate dependent statement. A coordinate-invariant quantity is the norm of the

acceleration,

a(r) ≡
(
gαβa

αaβ
)1/2

=
m

r2

(
1 − 2m

r

)−1/2

. (13.5)

(One can also think of this as the radial component of the acceleration with respect to

an orthonormal frame at that point, whose radial component would be (1−2m/r)1/2∂r,

the prefactor ensuring that this vector has unit length.) While this approaches the

Newtonian value as r → ∞, it diverges as r → 2m, indicating that stationary observers

will find it harder and harder, and need to travel nearly at the speed of light, to remain

stationary close to r = 2m.

13.2 Vertical Free Fall

We will now consider an object with r0 < rs and an observer who is freely falling

vertically (radially) towards such an object. “Vertical” means that φ̇ = 0, and therefore

there is no angular momentum, L = 0. Hence the effective potential equation (12.13)

becomes

E2 − 1 = ṙ2 − 2m

r
. (13.6)

In particular, if ri is the point at which the particle (observer) A was initially at rest,

dr

dτ
|r=ri = 0 , (13.7)

we have the relation

E2 = 1 − 2m

ri
(13.8)

between the constant of motion E and the initial condition ri. In particular, E = 1 for

an observer initially at rest at infinity. Then we obtain

ṙ2 =
2m

r
− 2m

ri
(13.9)
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and, upon differentiation,

r̈ +
m

r2
= 0 . (13.10)

This is just like the Newtonian equation (which should not come as a surprise as Veff

coincides with the Newtonian potential for zero angular momentum L = 0), apart from

the fact that r is not radial distance and the familiar τ 6= t. Nevertheless, calculation of

the time τ along the path proceeds exactly as in the Newtonian theory. For the proper

time required to reach the point with coordinate value r = r1 we obtain

τ = −(2m)−1/2

∫ r1

ri

dr

(
rir

ri − r

)1/2

. (13.11)

Since this is just the Newtonian integral, we know, even without calculating it, that it

is finite as r1 → rS and even as r1 → 0. This integral can also be calculated in closed

form, e.g. via the change of variables

r

ri
= sin2 α α1 ≤ α ≤ π

2
, (13.12)

leading to

τ = 2

(
r3i
2m

)1/2 ∫ π/2

α1

dα sin2 α =

(
r3i
2m

)1/2 [
α− 1

2 sin 2α
]π/2
α1

. (13.13)

In particular, this is finite as r1 → 2m and our freely falling observer can reach and

cross the Schwarzschild radius rS in finite proper time.

Coordinate time, on the other hand, becomes infinite at r1 = 2m. This can roughly

(and very easily) be seen by noting that

∆τ = (1 − 2m

r
)1/2∆t . (13.14)

As ∆τ is finite (as we have seen) and (1 − 2m
r )1/2 → 0 as r → 2m, clearly we need

∆t→ ∞. We will now describe this in a more precise and quantitative way.

13.3 Vertical Free Fall as seen by a Distant Observer

We will now investigate how the above situation presents itself to a distant observer

hovering at a fixed radial distance r∞. He will observe the trajectory of the freely falling

observer as a function of his proper time τ∞. Up to a constant factor (1 − 2m/r∞)1/2,

this is the same as coordinate time t, and we will lose nothing by expressing r as a

function of t rather than as a function of τ∞.

From (13.6),

ṙ2 + (1 − 2m

r
) = E2 , (13.15)
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which expresses r as a function of the freely falling observer’s proper time τ , and the

definition of E,

E = ṫ(1 − 2m

r
) , (13.16)

which relates τ to the coordinate time t, one finds an equation for r as a function of t,

dr

dt
= −E−1(1 − 2m

r
)(E2 − (1 − 2m

r
))1/2 (13.17)

(the minus sign has been chosen because r decreases as t increases). We want to analyse

the behaviour of the solution of this equation as the freely falling observer approaches

the Schwarzschild radius, r → 2m,

dr

dt
= −E−1(

r − 2m

r
)(E2 − r − 2m

r
)1/2

→ −E−1(
r − 2m

2m
)(E2)1/2 = −(

r − 2m

2m
) . (13.18)

We can write this equation as

d

dt
(r − 2m) = − 1

2m
(r − 2m) , (13.19)

which obviously has the solution

(r − 2m)(t) ∝ e−t/2m . (13.20)

This shows that, from the point of view of the observer at infinity, the freely falling

observer reaches r = 2m only as t → ∞. In particular, the distant observer will never

actually see the infalling observer cross the Schwarzschild radius.

This is clearly an indication that there is something wrong with the time coordinate t

which runs too fast as one approaches the Schwarzschild radius. We can also see this by

looking at the coordinate velocity v = dr/dt as a function of r. Let us choose ri = ∞
for simplicity - other choices will not change our conclusions as we are interested in the

behaviour of v(r) as r → rS . Then E2 = 1 and from (13.17) we find

v(r) = −(2m)1/2
r − 2m

r3/2
(13.21)

As a function of r, v(r) reaches a maximum at r = 6m = 3rS , where the velocity is

(restoring the velocity of light c)

vmax = v(r = 6m) =
2c

3
√

3
. (13.22)

Beyond that point, v(r) decreases again and clearly goes to zero as r → 2m. The fact

that the coordinate velocity goes to zero is another manifestation of the fact that coor-

dinate time goes to infinity. Somehow, the Schwarzschild coordinates are not suitable

for describing the physics at or beyond the Schwarzschild radius because the time co-

ordinate one has chosen is running too fast. This is the crucial insight that will allow

us to construct ‘better’ coordinates, which are also valid for r < rS , later on in this

section.
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13.4 Infinite Gravitational Red-Shift

One dramatic aspect of what is happening at (or, better, near) the Schwarzschild radius

for very (very!) compact objects with rS > r0 is the following. Recall the formula (2.86)

for the gravitational red-shift, which gave us the ratio between the frequency of light

νe emitted at the radius re and the frequency ν∞ received at the radius r∞ > re in a

static spherically symmetric gravitational field. The result, which is in particular also

valid for the Schwarzschild metric, was

ν∞
νe

=
(−g00(re))1/2
(−g00(r∞))1/2

. (13.23)

In the case of the Schwarzschild metric, this is

ν∞
νe

=
(1 − 2m/re)

1/2

(1 − 2m/r∞)1/2
. (13.24)

We now choose the emitter to be the freely falling observer whose position is described

by re = r(τ) or r(t), and the receiver to be the fixed observer at r∞ ≫ rS . As re → rS ,

one clearly finds
ν∞
νe

→ 0 . (13.25)

Expressed in terms of the gravitational red-shift factor z,

1 + z =
νe
ν∞

(13.26)

this means that there is an infinite gravitational red-shift as re → rS ,

re → rS ⇒ z → ∞ . (13.27)

More explicitly, using (13.20) one finds the late-time behaviour of the red-shift factor

z, in terms of coordinate time (or the distant observer’s proper time), to be

1 + z ∝ (r − 2m)(t)−1/2 ∝ e t/4m . (13.28)

Thus for the distant observer at late times there is an exponentially growing red-shift

and the distant observer will never actually see the unfortunate emitter crossing the

Schwarzschild radius: he will see the freely falling observer’s signals becoming dimmer

and dimmer and arriving at greater and greater intervals, and the freely falling observer

will completely disappear from the distant observer’s sight as re → rS . Note that the

time-scale tz for this exponential red-shift at late times is set by tz ∼ 4m/c, which is of

the order of

tz ∼ 10−5s

(
M

Msun

)
, (13.29)

so that this is pretty much instantaneous for an object the mass of an ordinary star.

We will come back to these estimates later on when (briefly) talking about gravitational

collapse in section 13.9.
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This was for a stationary observer. As we have seen, the situation presents itself rather

differently for the freely falling observer himself who will not immediately notice any-

thing particularly dramatic happening as he approaches or crosses rS.

13.5 The Geometry Near rS and Minkowski Space in Rindler Coordinates

We have now seen in two different ways why the Schwarzschild coordinates are not

suitable for exploring the physics in the region r ≤ 2m: in these coordinates the metric

becomes singular at r = 2m and the coordinate time becomes infinite. On the other

hand, we have seen no indication that the local physics, expressed in terms of covariant

quantities like proper time or the geodesic equation, becomes singular as well. So we

have good reasons to suspect that the singular behaviour we have found is really just

an artefact of a bad choice of coordinates.

In fact, the situation regarding the Schwarzschild coordinates is quite reminiscent of the

Rindler coordinates for Minkowski space we discussed (way back) in section 1.2. As we

saw there, these only covered part of Minkowski space (the right quadrant or Rindler

wedge), bounded by lines (or hypersurfaces) where the time coordinate η became infinite,

while inertial (geodesic, freely falling) observers could exit this region in finite proper

time. This is in fact more than just a loose analogy: as we will see now, the Rindler

metric (1.24) gives an accurate description of the geometry of the Schwarzschild metric

close to the Schwarzschild radius.

To confirm this, let us temporarily introduce the variable r̃ = r − 2m measuring the

coordinate distance from the horizon. In term of r̃ the (t, r)-part of the Schwarzschild

metric reads

ds2 = −
(

r̃

r̃ + 2m

)
dt2 +

(
r̃ + 2m

r̃

)
dr̃2 . (13.30)

Close to the horizon, i.e. for small r̃ << 2m, we can approximate

r̃

r̃ + 2m
≈ r̃

2m

r̃ + 2m

r̃
≈ 2m

r̃
, (13.31)

so that the metric becomes

ds2 = − r̃

2m
dt2 +

2m

r̃
dr̃2 . (13.32)

Introducing the new radial variable ρ (proper radial distance from the horizon) via

dρ2 =
2m

r̃
dr̃2 ⇒ ρ =

√
8mr̃ , (13.33)

one finds

ds2 = − 1

16m2
ρ2dt2 + dρ2 . (13.34)

Finally a simple rescaling of t, η = t/4m, leads to

ds2 = −ρ2dη2 + dρ2 , (13.35)
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which, remarkably, is identical to the Rindler metric (1.24). Keeping track of the trans-

verse 2-sphere and using r2 ≈ (2m)2 in the near-horizon approximation, the complete

metric in this limit and in these coordinates reads

ds2 = −ρ2dη2 + dρ2 + (2m)2dΩ2 (13.36)

If we further restrict to just a small angular region on the sphere, we can approximate

dθ2 + sin2 θdφ2 ≈ dθ2 + θ2dφ2 = (dx2)2 + (dx3)2 (13.37)

which gives us the complete 4-dimensional Rindler metric.

In any case, we see that, up to the harmless redefinition (r, t) → (ρ, η) that we just per-

formed, Schwarzschild coordinates for the Schwarzschild geometry are just like Rindler

coordinates for Minkowski space.

The first, and most crucial, thing we learn from this is that the singularity of the

Schwarzschild metric at r = 2m in the Schwarzschild coordinates (t, r) is, as anticipated,

a mere coordinate singularity. Indeed, r = 2m corresponds to r̃ = 0 ⇔ ρ = 0, and we

already know that the singularity of the Rindler metric at ρ = 0 is just a coordinate

singularity (which can be eliminated e.g. by passing to standard inertioal Minkowski

coordinates ξA via (1.23)).

Moreover, we can now understand physically why the Schwarzschild coordinates break

down at r = 2m: they are adapted to accelerating observers, in the present context

the stationary observers in the Schwarzschild geometry at constant r, with proper time

proportional to the Schwarzschild coordinate time t. Referring back to Figure 7 in

section 1.2, these are the observers with constant ρ hyperbolic wold lines.

The problem is evidently that the required acceleration of these observers becomes

infinite as ρ → 0 ⇔ r → 2m (as we have calculated in section 13.1). That these

observers appear to see a singular metric is then not the geometry’s fault but can be

attributed to a bad choice of observers whose perception of the geometry is distorted

by their acceleration and their desperate attempt to stay at constant values of r even

when they are very close to r = 2m.

The situation is quite different for the freely falling observers. Their worldlines look

like the vertical line labelled “worldline of a stationary observer” in Figure 7, they cross

the horizon in finite proper time, experiencing no strong acceleration or gravitational

fields. As already noted in section 1.2, they evidently become invisible to observers in

the Rindler quadrant (now “Schwarzschild patch”) of the geometry, stationary outside

observers noting an infnite gravitational redshift affecting the signals sent out by the

freely falling observer. Introducing coordinates adapted to them (so that e.g. time is

their proper time) would be tantamount to passing from Rindler coordinates to ordinary

Minkowski coordinates.
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We will not quite do that (one could) but base our construction of new coordinates

not on the behaviour of timelike freely falling observers but ingoing light rays which

evidently also do not suffer from the problems of the stationary observers (in the

Rindler/Minkowski case this amounts to the same thing in the end).

Finally, we can anticipate that upon introduction of suitable analogues of the Minkowski

coordinates for the Rindler space-time, we may perhaps uncover not just one new region

(quadrant) of space-time (the one lying to the “future” of r = 2m), but also counterparts

of the other two quadrants of Minkowski space. This expectation will indeed be borne

out.

13.6 Tortoise Coordinates

To improve our understanding of the Schwarzschild geometry, it is important to study

its causal structure, i.e. the lightcones. Radial null curves satisfy

(1 − 2m/r)dt2 = (1 − 2m/r)−1dr2 . (13.38)

Thus
dt

dr
= ±(1 − 2m/r)−1 , (13.39)

In the (r, t)-diagram of Figure 14, dt/dr represents the slope of the lightcones at a given

value of r. Now, as r → 2m, one has

dt

dr

r→2m−→ ±∞ , (13.40)

so the light clones ‘close up’ as one approaches the Schwarzschild radius. This is the

same statement as before regarding the fact that the coordinate velocity goes to zero at

r = 2m, but this time for null rather than timelike geodesics.

As our first step towards introducing coordinates that are more suitable for describing

the region around rS , let us write the Schwarzschild metric in the form

ds2 = (1 − 2m/r)(−dt2 + (1 − 2m/r)−2dr2) + r2dΩ2 . (13.41)

We see that it is convenient to introduce a new radial coordinate r∗ via

dr∗ = (1 − 2m/r)−1dr . (13.42)

The solution to this equation is

r∗ = r + 2m log(r/2m− 1) . (13.43)

This new radial coordinate r∗, known as the tortoise coordinate, also provides us with

the solution

t = ±r∗ + C (13.44)
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r=2m r

t

Figure 14: The causal structure of the Schwarzschild geometry in the Schwarzschild

coordinates (r, t). As one approaches r = 2m, the lightcones become narrower and

narrower and eventually fold up completely.

to the equation (13.39) describing the lightcones. In terms of r∗ the metric simply reads

ds2 = (1 − 2m/r)(−dt2 + dr∗2) + r2dΩ2 , (13.45)

where r is to be thought of as a function of r∗.

We see immediately that we have made some progress. Now the lightcones, defined by

dt2 = dr∗2 , (13.46)

do not seem to fold up as the lightcones have the constant slope dt/dr∗ = ±1 (see

Figure 15), and there is no singularity at r = 2m. However, r∗ is still only defined for

r > 2m and the surface r = 2m has been pushed infinitely far away (r = 2m is now at

r∗ = −∞). Moreover, even though non-singular, the metric components gtt and gr∗r∗

(as well as
√
g) vanish at r = 2m.

13.7 Eddington-Finkelstein Coordinates, Black Holes and Event Hori-

zons

Part of the problem is that t is still one of our coordinates, while we had already

anticipated that t is not suitable for exploring the region beyond rS. On the other hand,

geodesics reach rS in finite proper or affine time. It is therefore natural to introduce
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r*
r=2m

r*  =-infinity

t

Figure 15: The causal structure of the Schwarzschild geometry in the tortoise coordi-

nates (r∗, t). The lightcones look like the lightcones in Minkowski space and no longer

fold up as r → 2m (which now sits at r∗ = −∞).
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coordinates that are adapted to null geodesics, by promoting the integration constant

C in (13.44) to a new coordinate, namely the retarded and advanced time coordinates

u = t− r∗ , v = t+ r∗ . (13.47)

Then infalling radial null geodesics (dr∗/dt = −1) are characterised by v = const.

and outgoing radial null geodesics by u = const. [It is also possible, and occasionally

convenient, to introduce coordinates adapted to timelike geodesics.]

Now we pass to the ingoing or outgoing Eddington-Finkelstein coordinates (v, r, θ, φ)

or (u, r, θ, φ) (note that we keep r but eliminate t). This coordinate transformation

v(t, r) = t+r∗ is of the general form T (t, r) = t+ψ(r) (11.2) disucussed previously, and

preserves the t-independence and manifest spherical symmetry of the metric. In terms

of these coordinates the Schwarzschild metric reads

ds2 = −(1 − 2m/r)dv2 + 2dv dr + r2dΩ2

= −(1 − 2m/r)du2 − 2du dr + r2dΩ2 . (13.48)

Even though the metric coefficent guu or gvv vanishes at r = 2m, there is no real

degeneracy, the two-dimensional metric in the (v, r)- or (u, r)-directions having the

completely non-singular and non-degenerate form

g =

(
−(1 − 2m/r) ±1

±1 0

)
(13.49)

In particular, the determinant of the metric is

− det(gµν) ≡ g = r4 sin2 θ , (13.50)

which is completely regular at r = 2m.

To determine the lightcones in the Eddington-Finkelstein coordinates we again look at

radial null geodesics which this time are solutions to

(1 − 2m/r)dv2 = 2dv dr . (13.51)

Thus either dv/dr = 0 which, as we have seen, describes incoming null geodesics, v =

const., or
dv

dr
= 2(1 − 2m/r)−1 , (13.52)

which then describes outgoing null geodesics (the solution to this equation is evidently

v = 2r∗+C ⇔ u = t−r∗ = C). Thus the lightcone remain well-behaved (do not fold up)

at r = 2m, the surface r = 2m is at a finite coordinate distance, namely (to reiterate the

obvious) at r = 2m, and there is no problem with following geodesics beyond r = 2m.

But even though the lightcones do not fold up at r = 2m, something interesting is

certainly hapening there. Whereas, in a (v, r)-diagram (see Figure 16), one side of the
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r=0 r=2m
r

v

v=const.

Figure 16: The behaviour of lightcones in ingoing Eddington-Finkelstein coordinates.

Lightcones do not fold up at r = 2m but tilt over so that for r < 2m only movement in

the direction of decreasing r towards the singularity at r = 0 is allowed.

lightcone always remains horizontal (at v = const.), the other side becomes vertical at

r = 2m (dv/dr = ∞) and then tilts over to the other side. In particular, beyond r = 2m

all future-directed paths, those within the forward lightcone, now have to move in the

direction of decreasing r: clearly the ingoing null geodesics move towards smaller values

of r, but so do those that for r > 2m were outgoing,

(13.52) ⇒ dr/dv < 0 for r < 2m . (13.53)

There is thus no way to turn back to larger values of r, not on a geodesic but also not

on any other path (i.e. not even with a powerful rocket) once one has gone past r = 2m.

Thus, even though locally the physics at r = 2m is well behaved, globally the surface

r = 2m is very significant as it is a point of no return. Once one has passed the

Schwarzschild radius, there is no turning back. Such a surface is known as an event

horizon. Note that this is a null surface so, in particular, once one has reached the

event horizon one has to travel at the speed of light to stay there and not be forced

further towards r = 0.

In any case, we now encounter no difficulties when entering the region r < 2m, e.g. along
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lines of constant u and this region should be included as part of the physical space-time.

Note that because v = t + r∗ and r∗ → −∞ for r → 2m, we see that decreasing r

along lines of constant v amounts to t → ∞. Thus the new region at r ≤ 2m we have

discovered is in some sense a future extension of the original Schwarzschild space-time.

Note also that nothing, absolutely nothing, no information, no light ray, no particle,

can escape from the region behind the horizon. Thus we have a Black Hole, an ob-

ject that is (classically) completely invisible. Even though the Eddington-Finkelstein

coordinates were already introduced by Eddington back in 1924, the full significance of

the Schwarzschild radius and its interepretation as a “one-way membrane” were only

understood much later (Finkelstein, 1958).

In the above (v, r) coordinate system we can cross the event horizon only on future

directed paths, not on past directed ones. The situation is reversed when one uses the

coordinates (u, r) instead of (v, r). In that case, the lightcones in Figure 16 are flipped

(either up-down or left-right), and one can pass through the horizon on past directed

curves. The new region of space-time covered by the coordinates (u, r) is definitely

different from the new region we uncovered using (v, r) even though both of them lie

‘behind’ r = 2m. In fact, this one is a past extension (beyond t = −∞) of the original

Schwarzschild ‘patch’ of space-time. In this patch, the region behind r = 2m acts like

the opposite (time-reversal) of a black hole (a white hole) which cannot be entered on

any future-directed path.

Ordinary space-time diagrams are more familiar (and therefore more intuitive) than

space-null diagrams such as the above (r, v)-diagram (in which, for example, in the

asymptoticaly flat regime r → ∞ the lightcone has slopes 0 and 2 rather than the usual

±45◦ slopes ±1). In the present case this can easily be rectified by introducing a new

time-coordinate t̃ instead of v by the relation

v = t+ r∗ = t̃+ r . (13.54)

The metric looks perhaps somewhat less illuminating in the (t̃, r)-coordinates,

ds2 = −(1 − 2m/r)dt̃2 + (4m/r)dt̃ dr + (1 + 2m/r)dr2 + r2dΩ2 , (13.55)

but the lightcones and the horizon now have the following simple and easy to visualise

description:

• one side of the lightcone has (as we already know) v = const., thus dt̃/dr = −1

everywhere, is thus at −45◦ everywhere.

• the other side of the lightcone is described by dt̃/dr = +1 for r → ∞ (slope +1),

by dt̃/dr → ∞ for r → 2m, and dt̃/dr → −1 for r → 0.

• In particular, the horizon is (again) vertical in such a diagram, with the (would-

be) outgoing side of the lightcone tangent to the horizon, while the lightcone

degenerates as r → 0.
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Nice diagrams that you can find in many places depicting the collapse of a spheri-

cally symmetric star to a black hole and the formation of the horizon typically (either

implicitly or explicitly) use these (t̃, r)-coordinates.

13.8 The Klein-Gordon Field in the Schwarzschild Geometry

As an aside, I just want to point out that the tortoise coordinate r∗ and the Eddington

Finkelstein retarded and advanced time coordinates u and v are not only useful for

clarifying the causal structure of the Schwarzschild geometry, but also for the analysis

of the propagation of scalar (and other) fields. This is principally due to the fact that in

these coordinates the (t, r)-part of the metric is conformally flat - see (13.45) or (13.66)

below. Combined with the observation of section 5.5 that the Klein-Gordon action is

conformally invariant in (1+1)-dimensions, this leads to a canonical form for the (3+1)

wave operator in the (t, r)-sector (and the (θ, φ)-sector is standard anyway).

Specifically, we start with the action for a (massless, say) scalar field φ in the metric

(13.45),

S[φ] ∼
∫ √

gd4x gαβ∂αφ∂βφ

=

∫
dt dr∗ dΩ r2f(r)

[
f(r)−1(−(∂tφ)2 + (∂r∗φ)2) − r−2φ∆S2φ

]

=

∫
dt dr∗ dΩ

[
−(r∂tφ)2 + (r∂r∗φ)2) − f(r)φ∆S2φ

]
,

(13.56)

where f(r) = 1 − 2m/r, dΩ = sin θdθ dφ denotes the solid angle on the 2-sphere, and

∆S2 is the Laplace operator on the 2-sphere. Separating variables according to

φ(x) = r−1
∑

ℓ,m

ψℓm(t, r∗)Yℓm(θ, φ) , (13.57)

using

∆S2Yℓm = −ℓ(ℓ+ 1)Yℓm , (13.58)

and using

∂r∗r = f(r) ⇒ r∂r∗(ψℓm/r) = ∂r∗ψℓm − r−1f(r)ψℓm , (13.59)

one finds for ψ = ψℓm the equation of motion

(∂2
t − ∂2

r∗)ψ + Vℓ(r
∗)ψ = 0 , (13.60)

where

Vℓ(r
∗) = f(r)

(
ℓ(ℓ+ 1)

r2
+

2m

r3

)
. (13.61)

This potential is non-negative for all 2m < r < ∞ and goes to zero quite rapidly as

r → ∞ or r → 2m, i.e. as r∗ → ±∞,

r∗ → +∞ ⇔ r → ∞ : Vℓ(r) ∼ (r∗)−2

r∗ → −∞ ⇔ r → 2m : Vℓ(r) ∼ er
∗/2m .

(13.62)
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This means that at infinity (in r) and near the horizon, the solutions of this equation

can be chosen to have the standard right-moving (outgoing) / left-moving (ingoing)

form

ψ(t, r∗) ∼ e±iω(t− r∗) = e±iωu or ψ(t, r∗) ∼ e±iω(t+ r∗) = e±iωv . (13.63)

By separating out the time-dependence,

ψ(t, r∗) = e−iωtψ(r∗) , (13.64)

the exact equation to be solved takes the form of a standard time-independent Schrödinger

equation,

−∂2
r∗ψ + Vℓ(r

∗)ψ = ω2ψ . (13.65)

It plays an important role in numerous aspects of Black Hole physics, e.g. in the analysys

of the stability of the Schwarzschild solution. In this context, the above equation and

its counterparts for vectors and symmetric tensors are known as the Regge-Wheeler(-

Zerilli) equations.

13.9 The Kruskal-Szekeres Metric

Now let us to return to the exploration of the Schwarzschild geometry. Using Eddington-

Finkelstein coordinates, we had discovered two “new” regions of the spacetime. Are

there still other regions of space-time to be discovered? The answer is yes (as suggested

by the analogy with Rindler and Minkowski space) and one way to find them would be

to study spacelike rather than null geodesics. Alternatively, let us try to guess how one

might be able to describe the maximal extension of space-time. The first guess might be

to use the coordinates u and v simultaneously, instead of r and t. In these coordinates,

the metric takes the form

ds2 = −(1 − 2m/r)du dv + r2dΩ2 , (13.66)

with r = r(u, v). But while this is a good idea, the problem is that in these coordinates

the horizon is once again infinitely far away, at u = +∞ or v = −∞ (i.e. at 2r∗ =

v − u = −∞). We can rectify this by introducing coordinates U and V with

U = −e−u/4m , V = ev/4m (13.67)

say, so that the horizon is now at either U = 0 or V = 0. To better understand why we

choose these coordinates and why exactly this factor in the exponent (and not any other

positive number, which so far would have had the same effect of moving the horizon to

U = 0 or V = 0), note that

v − u

4m
=

r

2m
+ log

( r

2m
− 1
)

, (13.68)
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so that the prefactor f(r) = 1 − 2m/r can be written as

1 − 2m

r
=

2m

r

( r

2m
− 1
)

=
2m

r
e−r/2me (v − u)/4m . (13.69)

Thus the metric can then be written as

ds2 =
2m

r
e−r/2m

(
ev/4mdv

)(
−e−u/4mdu

)
+ r(u, v)2dΩ2 . (13.70)

It is now clear why (13.67) is a good choice: the metric now takes the simple form

ds2 = −32m3

r
e−r/2mdUdV + r(U, V )2dΩ2 , (13.71)

with r = r(U, V ) is given implicitly by

UV = −e (v − u)/4m = −er
∗/2m = −(r/2m− 1)e r/2m . (13.72)

In these coordinates the metric is now manifestly completely non-singular and regular

everywhere except at r = 0.

The horizon r = 2m is mapped to UV = 0 which is the union of the two lines U = 0

and V = 0. Moreover, t = t(U, V ) is given by

U/V = −e−(u+ v)/4m = −e−t/2m , (13.73)

The only remaining singularity is at r = 0 (this turns out to be not a mere coordinate

singularity but a real singularity of the geometry - we will come back to this below).

Minor cosmetic improvements can be obtained by introducing, instead of U and V

(13.67) the rescaled coordinates (uK , vK) through

duK = e−u/4mdu ⇒ uK = −4me−u/4m = 4m U

dvK = ev/4mdv ⇒ vK = +4me+v/4m = 4m V ,
(13.74)

in terms of which the metric takes the form

ds2 = −2m

r
e−r/2mduKdvK + r2dΩ2 , (13.75)

but then factors of (16m2) will reappear in other places, so we will forego this here.

It is also possible to further scale uK and vK so that the exponential prefactor has

the form exp(−(r − 2m)/2m) (e.g. by defining r∗ with a different integration constant,

r∗ → r∗ − 2m), so that for r → 2m the metric tends to ds2 → −dukdvk without

additional numerical factors like e−1 but, as I said, this is pure cosmetics. In any case,

as we will learn later on, U and V are coordinates that are naturally defined only up to

affine transformations, so one choice is as good as any other.

Finally, we pass from the null coordinates (U, V ) (meaning that ∂U and ∂V are null

vectors) to more familiar timelike and spacelike coordinates (T,X) defined, in anaogy

with (u, v) = t∓ r∗, by

U = T −X , V = T +X , (13.76)
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in terms of which the metric is

ds2 =
32m3

r
e−r/2m(−dT 2 + dX2) + r2dΩ2 . (13.77)

Here r = r(T,X) is now implicitly given by

X2 − T 2 = (r/2m− 1)e r/2m . (13.78)

Chasing through the above sequence of coordinate transformations

(t, r) → (t, r∗) → (u, v) → (U, V ) → (T,X) , (13.79)

one finds that the coordinate transformation (t, r) → (T,X) is explicitly, and in its full

glory, given by

X(t, r) = 1
2(V − U) = (r/2m− 1)1/2er/4m cosh t/4m

T (t, r) = 1
2(U + V ) = (r/2m− 1)1/2er/4m sinh t/4m ,

(13.80)

As in Minkowski space, null lines are given by X = ±T + const. The horizon is now at

the null surfaces

r = 2m ⇒ X = ±T , (13.81)

and surfaces of constant r are given by X2 − T 2 = const.

Thus the original “Schwarzschild patch” r > 2m, the region of validity of the Schwarzschild

coordinates, corresponds to the region X > 0 and X2 − T 2 > 0, or |T | < X. As Figure

17 shows, this ‘Schwarzschild patch’ is mapped to the first quadrant of the Kruskal-

Szekeres metric, bounded by the lines X = ±T which correspond to r = 2m.

But now that we have the coordinates X and T , we can let these coordinates (X,T )

range over all the values for which the metric is non-singular. The only remaining

singularity is at r = 0, which corresponds to the two sheets of the hyperboloid

r = 0 ⇔ T 2 −X2 = 1 ⇔ T = ±
√

1 +X2 . (13.82)

That r = 0 is indeed a real singularity that cannot be removed by a coordinate trans-

formation can be shown by calculating some invariant of the curvature tensor, like the

Kretschmann scalar K = RµνρσR
µνρσ . On purely dimensional grounds, K must be

proportional to m2/r6, the crucial feature being that the constant of proportionality is

not zero, explicit calculations (this is a doable but thoroughly unenlightning exercise)

showing that

RµνρσR
µνρσ = 48

m2

r6
. (13.83)

Thus the geometry is genuinely singular at r = 0. Nevertheless, since the metric is

non-singular for all values of (X,T ) subject to the constraint r > 0 or T 2 − X2 < 1,

there is no physical reason to exclude the regions in the other quadrants also satisfying

this condition.
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r=2m

T

X

Figure 17: The Schwarzschild patch in the Kruskal-Szekeres metric: the half-plane

r > 2m is mapped to the quadrant between the lines X = ±T in the Kruskal-Szekeres

metric.

By including them, we obtain the Kruskal diagram Figure 18. This extension of the

Schwarzschild metric was discovered independently by Kruskal and Szekeres in 1960 and

presents us with an amazingly rich and complex picture of what originally appeared to

be a rather simple (and perhaps even dull) solution to the Einstein equations. It can be

shown that this represents the maximal analytic extension of the Schwarzschild metric

in the sense that every affinely parametrised geodesic can either be continued to infinite

values of its parameter or runs into the singularity at r = 0 at some finite value of the

affine parameter.4

In addition to the Schwarzschild patch, quadrant I, we have three other regions, living

in the quadrants II, III, and IV, each of them having its own peculiarities. Note that

obviously the conversion formulae from (r, t) → (X,T ) in the quadrants II, III and IV

differ from those given above for quadrant I. E.g. in region II one can use Schwarzschild(-

like) coordinates in which the metric reads

ds2 =

(
2m

r
− 1

)
dt2 −

(
2m

r
− 1

)−1

dr2 + r2dΩ2 (13.84)

(these are not the same coordinates as those in patch I, as we have seen we cannot

continue the Schwarzschild coordinates across the horizon), and in this quadrant (where

r is a time coordinate etc.) the relation between Schwarzschild and Kruskal coordinates

4One can also show that any spherically symmetric solution of the Einstein equations is locally

isometric to some domain of the Schwarzschild-Kruskal solution. For a proof of this generalised Birkhoff

theorem see e.g. N. Straumann, General Relativity.
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II
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T
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Figure 18: The complete Kruskal-Szekeres universe. Diagonal lines are null, lines of

constant r are hyperbolas. Region I is the Schwarzschild patch, seperated by the horizon

from regions II and IV. The Eddington-Finkelstein coordinates (u, r) cover regions I and

II, (v, r) cover regions I and IV. Regions I and III are filled with lines of constant r > 2m.

They are causally disconnected. Observers in regions I and III can receive signals from

region IV and send signals to region II. An observer in region IV can send signals into

both regions I and III (and therefore also to region II) and must have emerged from the

singularity at r = 0 at a finite proper time in the past. Any observer entering region II

will be able to receive signals from regions I and III (and therefore also from IV) and

will reach the singularity at r = 0 in finite time. Events occuring in region II cannot be

observed in any of the other regions.
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is

X = (1 − r/2m)1/2e r/4m sinh t/4m

T = (1 − r/2m)1/2e r/4m cosh t/4m . (13.85)

To get acquainted with the Kruskal diagram, let us note the following basic facts:

1. Null lines are diagonals X = ±T+const., just as in Minkowski space. This greatly

facilitates the exploration of the causal structure of the Kruskal-Szekeres metric.

2. In particular, the horizon corresponds to the two lines X = ±T .

3. Lines of constant r are hyperbolas. For r > 2m they fill the quadrants I and III,

for r < 2m the other regions II and IV.

4. In particular, the singularity at r = 0 is given by the two sheets of the hyperbola

T 2 −X2 = 1.

5. Notice in particular also that in regions II and IV worldlines with r = const. are

no longer timelike but spacelike.

6. Lines of constant Schwarzschild time t are straight lines through the origin. E.g.

in region I one has X = (coth(t/4m))T , with the future horizon X = T corre-

sponding, as expected, to t → ∞.

7. The Eddington-Finkelstein coordinates (v, r) cover the regions I and II, the coor-

dinates (u, r) the regions I and IV.

8. Quadrant III is completely new and is seperated from region I by a spacelike

distance. That is, regions I and III are causally disconnected.

Now let us see what all this tells us about the physics of the Kruskal-Szekeres metric.

An observer in region I (the familiar patch) can send signals into region II and receive

signals from region IV. The same is true for an observer in the causally disconnected

region III. Once an observer enters region II from, say, region I, he cannot escape from

it anymore and he will run into the catastrophic region r = 0 in finite proper time.

As a reward for his or her foolishness, between having crossed the horizon and being

crushed to death, our observer will for the first time be able to receive signals and meet

observers emerging from the mirror world in region III. Events occurring in region II

cannot be observed anywhere outside that region (black hole). Finally, an observer in

region IV must have emerged from the (past) singularity at r = 0 a finite proper time

ago and can send signals and enter into either of the regions I or III.

Another interesting aspect of the Kruskal-Szekeres geometry is its dynamical character.

This may appear to be a strange thing to say since we explicitly started off with a static
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metric. But this statement applies only to region I (and its mirror III). An investigation

of the behaviour of spacelike slices analogous to that we performed at the end of section

11 for region I (see Figure 9) reveals a dynamical picture of continuing gravitational

collapse in region II. In simple terms, the loss of staticity can be understood by noting

that the timelike Killing vector field ∂t of region I, when expressed in terms of Kruskal

coordinates, becomes null on the horizon and spacelike in region II.

Indeed it is easy to check from (13.72) and (13.73) that the time-translation symnmetry

(t, r) → (t+ c, r) of the Schwarzschild patch corresponds to the transformation

U → e−c/4mU V → ec/4mV . (13.86)

This is a boost in the (U, V ) or (T,X)-plane which leaves the entire Kruskal metric

invariant since dUdV is invariant and r = r(U, V ) depends on U and V only via the

boost-invariant quantity UV (13.72). Thus this symmetry is generated by the Killing

vector

K = (V ∂V − U∂U )/4m = (X∂T + T∂X)/4m , (13.87)

It follows that K has norm proportional to T 2 −X2,

||K||2 =
2m

r
e−r/2m(T 2 −X2) . (13.88)

There are thus three different cases to consider, each of them interesting in its own right:

• K timelike

K is timelike in the original region I (and in the mirror region III), with (13.78)

I : ||K||2 = −2m

r
e−r/2m(

r

2m
− 1)e r/2m = −(1 − 2m

r
) , (13.89)

confirming that K = ∂t in region I. We thus recover the statement that the

Schwarzschild metric in the Schwarzschild patch is static.

• K spacelike

K is spacelike in region II. Thus region II has no timelike Killing vector field,

therefore cannot possibly be static, but has instead an additional spacelike Killing

vector field.

Related to this is the fact, already mentioned above, that in regions II and IV the

slices of constant r are no longer timelike but spacelike surfaces. Thus they are

analogous to, say, constant t or T slices for r > 2m. Just as it does not make

sense to ask “where is the slice t = 1?” (say), only “when is t = 1?”, or “where

is r = 3m?”, in these regions it makes no sense to ask “where is r = m?”, only

“when is r = m?”.
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• K null

K is null on the horizon. This turns out to be the most interesting case, and

therefore I will elaborate on this a bit in the following.

K is null on (and tangent to) the horizon T = ±X or UV = 0. In fact it reduces to

K = (V/4m)∂V = ∂v on the horizon U = 0 (and to K = ∂u on V = 0). In this context

(or from this perspective) the horizon is known as a Killing horizon (the locus where

an asymptotically time-like Killing vector becomes null).

Therefore K generates translations along the horizon, v → v + c, and is called the null

generator of (this branch of) the horizon. Thus v can naturally be used as a coordinate

there. Evidently, K vanishes at the “point” U = V = 0 where the other horizon

V = 0 branches off. Actually this is of course not a point but a perfectly respectable

2-sphere of radius r = 2m known as the bifurcation surface of the Killing horizon of

the Schwarzschild geometry, and K vanishing means that this 2-sphere it is invariant

under the time-translation generated by K, something that is also evident from (13.86).

On U = 0 it lies at V → 0 ⇒ v → −∞, so the Eddington-Finkelstein coordinate

v ∈ (−∞,+∞) only covers the half-line U = 0, V > 0 of the horizon.

On the other hand the line U = 0 is itself an “outgoing” (radial) null geodesic, but

in light of the above v cannot possibly be an affine parameter along that geodesic

(the affine parameter should not reach infinite values half-way along the geodesic). The

failure of v to be an affine parameter on the horizon can be quantified by calculating the

acceleration ∇KK = ∇∂t∂t (4.61) of the (integral curves of the) Killing vector and then

taking the limit r → 2m. This calculation is quite painless in Eddington-Finkelstein

coordinates (v, r) in which K = ∂v everywhere,

K = ∂t = (∂tv)∂v + (∂tr)∂r = ∂v (13.90)

(K is evidently a Killing vector because the components of the metric do not depend

on v). Then the acceleration is

∇KK ≡ (∇KK)α∂α = Γαvv∂α = (f ′/2)(f∂r + ∂v) (13.91)

where f(r) = 1 − 2m/r. Thus for r → 2m one finds

lim
r→2m

∇KK =
(

1
2f

′(r)|r=2m

)
K =

(m
r2

|r=2m

)
K = 1

4mK . (13.92)

Since we have ∇KK ∼ K on the horizon, this shows first of all that there it generates

a non-affinely parametrised geodesic (see (2.25) and (4.62)). Moreover, we see that

one interpretation of the ubiquitous factor 1/4m is that it measures the failure of v

to be an affine parameter on the horizon. Another interpretation, brought out by the

same calculation, is that 1/4m is the surface gravity κ which measures the strength of
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the gravitational force (acceleration) a(r) (13.5) acting on a stationary observer at the

horizon, but as measured at infinity (by taking into account the red-shift factor f(r)1/2),

lim
r→2m

∇KK = κK

κ := lim
r→2m

f(r)1/2a(r) = 1
2f

′(r)|r=2m = 1/4m .
(13.93)

Note, incidentally, that the above calculation also shows that v is an affine parameter

on a null surface at r → ∞. Noting that v parametrises in-going light rays, this null

surface is the surface of past null infinity, affectionately known as scri-minus (short for

“script-I minus”) I−. Likewise, u is an affine parameter on future null infinity I+.5

Anyway, to return to the beginning of this story, v is not an affine parameter along the

horizon. It turns out, however, that the Kruskal coordinate V is an affine parameter

there (and this is one way of understanding why Kruskal coordinates are so natural for

exploring the causal structure of the metric), meaning that the null curve

xα(λ) = (U(λ), V (λ), θ(λ), φ(λ)) = (0, λ, θ0, φ0) (13.94)

is an affinely parametrised null geodesic. This follows on the nose from (13.92) and

the result (2.27) of section 2.2. Noting that κ is constant (actually not just along the

geodesic but on the entire horizon, but the former is all we need), (2.27) with τ → λ

and σ → v becomes (dropping integration constants)

dλ

dv
∼ eκv → λ(v) ∼ κ−1eκv ∼ V . (13.95)

Another way to see this, which provides some more insight, is to analyse the geodesic

Lagrangian and the conserved quantity associated toK in ingoing Eddington-Finkelstein

coordinates (one could also work in Kruskal coordinates, but nothing is gained by that).

From the metric (13.48) we deduce that for a radial null-geodesics one has

−f(r)v̇2 + 2v̇ṙ = 0 (13.96)

where a dot denotes a derivative with respect to the affine parameter λ. The geodesics

with v = const describe ingoing null-geodesics and we are not interested in these, so we

have

−f(r)v̇ + 2ṙ = 0 , (13.97)

and since u = t− r∗ = v − 2r∗ and dr∗/dr = f(r)−1, this is equivalent to u̇ = 0 and, as

anticipated, describes outgoing geodesics. Moreover, we have the conserved quantity E

associated to the Killing vector K = ∂v,

f v̇ − ṙ = E . (13.98)

5Defining these objects properly requires singnifcantly more care. For details, and much more, see

e.g. the classic text-book The large scale structure of space-time by S. Hawking and G. Ellis, or General

Relativity by R. Wald.
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From these two equations we immediately deduce (with a convenient parametrisation

of the integration constant)

ṙ = E ⇒ r(λ) = E(λ− λ0) + rS . (13.99)

For the null geodesic along the horizon we are ultimately interested in, we have r(λ) =

rS , i.e. E = 0, but we need to approach this with some care, so we keep the general

solution for now. Analogously, for v we find the equation

f(r)v̇ = 2E ⇒ v̇ =
2Er(λ)

r(λ) − rS
= 2E +

2rS
λ− λ0

. (13.100)

We can now take the limit E → 0 with impunity, and are left with

v̇ =
2rS

λ− λ0
⇒ v(λ) = 2rS ln(λ− λ0) + const. . (13.101)

The prefactor 2rS = 4m is now precisely such that it cancels the factor 1/4m in the

definition of the Kruskal coordinate V (13.67), so that

V (λ) = ev(λ)/4m = a(λ− λ0) , (13.102)

which is precisely the statement that V is related to λ by an affine transformation. Thus

V is an affine parameter along the horizon U = 0, as claimed.

We now have two natural coordinates on the future horizon U = 0, V > 0 which we can

for instance use to measure the frequency of incoming waves. ∂t → ∂v measures what

is commonly called Killing frequency (this requires no further explanation since it is

associated to the Killing vector which generates time-translations in the Schwarzschild

wedge), and ∂V measures the so-called free fall frequency (since, more or less by con-

struction, a freely falling observer in the Schwarzschild geometry near r = 2m will see

approximately the Minkowski space-time metric ds2 ∼ −dUdV ). The exponential rela-

tion (13.67) between them reflects the exponential blue- or red-shift we first encountered

in section 13.4.

In conclusion to this long excursion of this long section, I cannot resist mentioning that

the surface gravity κ plays a crucial role in the analysis of the classical dynamics of black

holes, and even more so in the semi-classical context, since it is directly proportional to

the temperature of the famous Hawking radiation of an evaporating black hole,

TH =
κ

2π
=

1

8πGM
. (13.103)

For more details on this and other related advanced topics I am not able to cover or do

justice to here, I refer you to the superb Cambridge lecture notes on Black Holes.6

6P. Townsend, Black Holes, arXiv:gr-qc/9707012v1.
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13.10 Varia on Black Holes and Gravitational Collapse

Now you may well wonder if all this talk about white holes and mirror regions is for

real or just science fiction. Clearly, if an object with r0 < 2m exists and is described by

the Schwarzschild solution, then we will have to accept the conclusions of the previous

section. However, this requires the existence of an eternal black hole (in particular,

eternal in the past) in an asymptotically flat space-time, and this is not very realistic.

While black holes are believed to exist, they are believed to form as a consequence of

the gravitational collapse of a star whose nuclear fuel has been exhausted (and which

is so massive that it cannot settle into a less singular final state like a White Dwarf or

Neutron Star).

To see how we could picture the situation of gravitational collapse (without trying to

understand why this collapse occurs in the first place), let us estimate the average

density ρ of a star whose radius r0 is equal to its Schwarzschild radius. For a star with

mass M we have

rS =
2MG

c2
(13.104)

and approximately

M =
4πr30

3
ρ . (13.105)

Therefore, setting r0 = rS , we find that

ρ =
3c6

32πG3M2
≈ 2 × 1016 g/cm3

(
Msun
M

)2

. (13.106)

For stars of a few solar masses, this density is huge, roughly that of nuclear matter.

In that case, there will be strong non-gravitational forces and hydrodynamic processes,

singificantly complicating the description of the situation. The situation is quite simple,

however, when an object of the mass and size of a galaxy (M ∼ 1010Msun) collapses.

Then the critical density (13.106) is approximately that of air, ρ ∼ 10−3 g/cm3, non-

gravitational forces can be neglected completely, and the collapse of the object can be

approximated by a free fall. The Schwarzschild radius of such an object is of the order

of light-days (∼ 105s).

Under these circumstances, a more realistic Kruskal-like space-time diagram of a black

hole would be the one depicted in Figure 19. We assume that at time t = 0 (T = 0) we

have a momentarily static mass configuration with radius R ≫ 2m and mass M which

then starts to collapse in free fall. Neglecting radiation-effects, the mass M of the star

(galaxy) remains constant so that the exterior of the star r > R is described by the

corresponding subset of region I of the Kruskal-Szekeres metric. Note that regions III

and IV no longer exist because the region r < R is simply not at all described by the

Schwarzschild solution, but should be described by a solution of the Einstein equations

appropriate for the interior of the star (in particular, this better be a solution of the

non-vacuum Einstein equations).
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r=0

r=R=const.

r=2m , t=infinity

Interior 

Star
of the

Surface
of the
Star

T

X

Figure 19: The Kruskal diagram of a gravitational collapse. The surface of the star

is represented by a timelike geodesic, modelling a star (or galaxy) in free fall under

its own gravitational force. The surface will reach the singularity at r = 0 in finite

proper time whereas an outside observer will never even see the star collapse beyond its

Schwarzschild radius. However, as discussed in the text, even for an outside observer

the resulting object is practically ‘black’.
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The surface of the star can be represented by a timelike geodesic going from r = R at

t = 0 to r = 0. According to (13.13), it will reach r = 0 after the finite proper time

τR→0 = 2

(
R3

2m

)1/2 ∫ π/2

0
dα sin2 α = π

(
R3

8m

)1/2

. (13.107)

For an object the size of the sun this is of the order of one hour!

Note that, even if the free fall (geodesic) approximation is no longer justified at some

point, once the surface of the star has crossed the Schwarzschild horizon, nothing, no

amount of pressure, can stop the catastrophic collapse to r = 0 because, whatever hap-

pens, points on the surface of the star will have to move within their forward lightcone

and will therefore inevitably end up at r = 0 (and since timelike geodesics maximise

proper time, any non-geodesic attempt to avoid hitting r = 0 will only get you there

even quicker . . . ).

In interepreting this it should be kept in mind that the Schwarzschild metric was never

meant to be valid at r = 0 anyway (as it is supposed to describe the exterior of a gravi-

tating body). Nevertheless, just being close enough to r = 0, without actually reaching

that point is more than sufficient to crush any kind of matter. Indeed, (13.83) and the

geodesic deviation equation (section 8.3) show that the force needed to keep neighbour-

ing particles apart is proportional to r−3. Thus the tidal forces within arbitrary objects

(be they solids or elementary particles) eventually become infinitely big so that these

objects will be crushed completely. In that sense, the physics becomes hopelessly singu-

lar even before one reaches r = 0 and there seems to be nothing to prevent a collapse of

such an object to r = 0 and infinite density. Certainly classical general relativity (and

even current-day quantum field theory) are inadequate to describe this situation (and

if or how a theory of quantum gravity can deal with these matters remains to be seen).

For an observer remaining outside the collpasing star, say at the constant value r = r∞,

the situation (not unexpectedly by now) presents itself in a rather different way. Up

to a constant factor (1 − 2m/r∞)1/2, his proper time equals the coordinate time t. As

the surface of the collapsing galaxy crosses the horizon at t = ∞, strictly speaking the

outside observer will never see the black hole form.

We had already encountered a similar phenomenon in our discussion of the infinite

gravitational red-shift. As we have seen, the gravitational red-shift grows exponentially

with time (13.28), z ∼ exp t/4m, for radially emitted photons. The luminosity L of

the star decreases exponentially, as a consequence of the gravitational red-shift and the

fact that photons emitted at equal time intervals from the surface of the star reach the

observer at greater and greater time intervals. It can be shown that

L ∼ e−t/3
√

3m , (13.108)

so that the star becomes very dark very quickly, the characteristic time being of the
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order of

3
√

3m ≈ 2, 5 × 10−5s

(
M

Msun

)
. (13.109)

Thus, even though for an outside observer the collapsing star never disappears com-

pletely, for all practical intents and purposes the star is black and the name ‘black hole’

is justified.

It is fair to wonder at this point if the above conclusions regarding the collapse to r = 0

are only a consequence of the fact that we assumed exact spherical symmetry. Would the

singularity be avoided under more general conditions? The answer to this is, somewhat

surprisingly and shockingly, a clear ‘no’.

There are very general singularity theorems, due to Penrose, Hawking and others, which

all state in one way or another that if Einstein’s equations hold, the energy-momentum

tensor satisfies some kind of positivity condition, and there is a regular event horizon,

then some kind of singularity will appear. These theorems do not rely on any symmetry

assumptions.

It has also been shown that the gravitational field of a static black hole, even with-

out further symmetry assumptions, is necessarily given by the spherically symmetric

Schwarzschild metric and is thus characterised by the single parameter M .

Of course, other exact solutions describing isolated systems like a star, meaning that the

solution is asymptotically flat, are known. Two important examples are the following:

1. The Reissner-Nordstrøm Metric

The Reissner-Nordstrøm metric is a solution to the coupled Einstein-Maxwell

equations describing the gravitational field of a spherically symmetric electrically

charged star. It is characterised by two parameters, its mass M and its charge Q,

with Ftr = −Q/r2, and the metric is

ds2 = −(1 − 2M

r
+
Q2

r2
)dt2 + (1 − 2M

r
+
Q2

r2
)−1dr2 + r2dΩ2 . (13.110)

Note that this can be obtained from the Schwarzschild metric by substituting

M →M − Q2

2r
. (13.111)

The structure of the singularities and event horizons is more complicated now

than in the case of the Schwarzschild metric and also depends on the relative size

of Q and M .

If Q2 > M2 (this is not a very realistic situation), then the metric is non-singular

everywhere except, of course, at r = 0. In particular, the coordinate t is always

timelike and the coordinate r is always spacelike. While this may sound quite

pleasing, much less insane than what happens for the Schwarzschild metric, this
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is actually a disaster. The singularity at r = 0 is now timelike, and it is not

protected by an event-horizon. Such a singularity is known as a naked singular-

ity. An observer could travel to the singularity and come back again. Worse,

whatever happens at the singularity can influence the future physics away from

the singularity, but as there is a singularity this means that the future cannot

be predicted/calculated in such a space-time because the laws of physics break

down at r = 0. There is a famous conjecture, known as the Cosmic Censorship

Conjecture, which roughly speaking states that the collapse of physically realistic

matter configurations will generically not lead to a naked singularity. In spite of

a lot of partial results and circumstantial evidence in favour of this conjecture, it

is not known if (or in which precise form) it holds in General Relativity.

The situation is even more interesting in the somewhat more realistic case M2 >

Q2. In that case, there are two radii

r± = M ±
√
M2 −Q2 (13.112)

at which the metric becomes singular. The outer one is just like the event horizon

of the Schwarzschild metric, the inner one reverses the role of radius and time

once more so that the singularity is timelike and can be avoided by returning to

larger values of r. There is much more that can and should be said about this

solution but I will not do this here.

2. The Kerr Metric

The Kerr metric describes a rotating black hole and is characterised by its mass M

and its angular momentum J . Now one no longer has spherical symmetry (because

the axis of rotation picks out a particular direction) but only axial symmetry. The

situation is thus a priori much more complicated. A stationary solution (i.e. one

with a timelike Killing vector, ‘static’ is a slightly stronger condition) was found

by Kerr only in 1963, almost fifty years after the Schwarzschild and Reissner-

Nordstrøm solutions. Its singularity and horizon structure is much more intricate

and intriguing than that of the solutions discussed before. One can pass from one

universe into a different asymptotically flat universe. The singularity at r = 0 has

been spread out into a ring; if one enters into the ring, one can not only emerge

into a different asymptotically flat space-time but one can also turn back in time

(there are closed timelike curves), one can dip into the black hole and emerge with

more energy than one had before (at the expense of the angular momentum of the

black hole), etc. etc. All this is fun but also rather technical and I will not go into

any of this here.

However, it is worth keeping in mind that the Kerr metric is definitely of astro-

physical importance. Astrophysical black holes, while they may carry negligible

charge Q, are expected to typically have a non-zero angular momentum J .
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Of course there are also solutions describing a combination of the two above solutions,

namely charged rotating black holes (the Kerr-Newman metric). One of the reasons

why I mention these solutions is that it can be shown that the most general stationary

electrically charged black hole is characterised by just three parameters, namely M ,

Q and J . This is generally referred to as the fact that black holes have no hair, or

as the no-hair theorem. It roughly states that the only characteristics of a black hole

which are not somehow radiated away during the phase of collapse via multipole mo-

ments of the gravitational, electro-magnetic, . . . fields are those which are protected by

some conservation laws, something that in simple cases can be confirmed by an explicit

calculation.
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14 Interlude: Maximally Symmetric Spaces

As a preparation for our discussion of cosmology in subsequent sections, in this section

we will discuss some aspects of what are known as maximally symmetric spaces. These

are spaces that admit the maximal number of Killing vectors (which turns out to be

n(n+1)/2 for an n-dimensional space). As we will discuss later on, in the context of the

Cosmological Principle, such spaces, which are simultaneously homogeneous (“the same

at every point”) and isotropic (“the same in every direction”) provide an (admittedly

highly idealised) description of space in a cosmological space-time,

14.1 Curvature and Killing Vectors

In order to understand how to define and characterise maximally symmetric spaces, we

will need to obtain some more information about how Killing vectors can be classified.

For reasons that will become apparent below, we will first derive an identity involving

Killing vectors and the curvature tensor. Using the defining relation of the Riemann

curvature tensor,

(∇µ∇ν −∇ν∇µ)Vρ = −RλρµνVλ (14.1)

and its cyclic symmetry,

Rλρµν +Rλνρµ +Rλµνρ = 0 , (14.2)

it is possible to deduce (exercise!) that for a Killing vector Kµ, ∇µKν +∇νKµ = 0, one

has

∇λ∇µKν(x) = Rρλµν(x)Kρ(x) . (14.3)

This has a rather remarkable consequence: as you can see, the second derivatives of

the Killing vector at a point x0 are again expressed in terms of the value of the Killing

vector itself at that point. But this means (think of Taylor expansions), that a Killing

vector field Kµ(x) is completely determined everywhere by the values of Kµ(x0) and

∇µKν(x0) at a single point x0.

A set of Killing vectors {K(i)
µ (x)} is said to be independent if any linear relation of the

form ∑

i

ciK
(i)
µ (x) = 0 , (14.4)

with constant coefficients ci implies ci = 0.

Since, in an n-dimensional space(-time) there can be at most n linearly independent

vectors (Kµ(x0)) at a point, and at most n(n−1)/2 independent anti-symmetric matrices

(∇µKν(x0)), we reach the conclusion that an n-dimensional space(-time) can have at

most

n+
n(n− 1)

2
=
n(n+ 1)

2
(14.5)
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independent Killing vectors. An example of a metric with the maximal number of Killing

vectors is, none too surprisingly, n-dimensional Minkowski space, where n(n+1)/2 agrees

with the dimension of the Poincaré group, the group of transformations that leave the

Minkowski metric invariant.

As an aside, note that contracting (14.3) over λ and µ, one learns that

∇µ∇µKν = −RνµKµ . (14.6)

In particular, if (or wherever) Rµν = 0, the antisymmetric tensor

Aµν = ∇µKν = −Aνµ (14.7)

is covariantly conserved,

Rµν = 0 ⇒ ∇µAµν = 0 ⇔ ∂µ(
√
gAµν) = 0 . (14.8)

As this is now, unlike an energy-momentum tensor (cf. the discussion in section 5.7), an

antisymmetric tensor, this allows one e.g. to construct corresponding conserved charges,

something along the lines of

QK =

∫
AµνdΣ

µν , (14.9)

associated to isometries of solutions of the vacuum Einstein equations. These are known

as Komar charges.

14.2 Homogeneous, Isotropic and Maximally Symmetric Spaces

We have seen above that Killing vectors Kµ(x) are determined by the values Kµ(x0)

and ∇µKν(x0) at a single point x0. We will now see how these data are related to

translations and rotations.

We define a homogeneous space to be such that it has infinitesimal isometries that carry

any given point x0 into any other point in its immediate neighbourhood (this could be

stated in more fancy terms!). Thus the metric must admit Killing vectors that, at any

given point, can take all possible values. Thus we require the existence of Killing vectors

for arbitrary Kµ(x0). This means that the n-dimensional space admits n translational

Killing vectors.

We define a space to be isotropic at a point x0 if it has isometries that leave the given

point x0 fixed and such that they can rotate any vector at x0 into any other vector at

x0. Therefore the metric must admit Killing vectors such that Kµ(x0) = 0 but such

that ∇µKν(x0) is an arbitrary antisymmetric matrix (for instance to be thought of as an

element of the Lie algebra of SO(n)). This means that the n-dimensional space admits

n(n− 1)/2 rotational Killing vectors.
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Finally, we define a maximally symmetric space to be a space with a metric with the

maximal number n(n+ 1)/2 of Killing vectors.

Some simple and fairly obvious consequences of these definitions are the following:

1. A homogeneous and isotropic space is maximally symmetric.

2. A space that is isotropic for all x is also homogeneous. (This follows because

linear combinations of Killing vectors are again Killing vectors and the difference

between two rotational Killing vectors at x and x + dx can be shown to be a

translational Killing vector.)

3. (1) and (2) now imply that a space which is isotropic around every point is max-

imally symmetric.

4. Finally one also has the converse, namely that a maximally symmetric space is

homogeneous and isotropic.

In practice the characterisation of a maximally symmetric space which is easiest to use is

(3) because it requires consideration of only one type of symmetries, namely rotational

symmetries.

14.3 The Curvature Tensor of a Maximally Symmetric Space

On the basis of these simple considerations we can already determine the form of the

Riemann curvature tensor of a maximally symmetric space. We will see that maximally

symmetric spaces are spaces of constant curvature in the sense that

Rijkl = k(gikgjl − gilgjk) (14.10)

for some constant k.

This result could be obtained by making systematic use of the higher order integrability

conditions for the existence of a maximal number of Killing vectors. The argument

given below is less covariant but more elementary.

Assume for starters that the space is isotropic at x0 and choose a Riemann normal

coordinate system centered at x0. Thus the metric at x0 is gij(x0) = ηij where we may

just as well be completely general and assume that

ηij = diag(−1, . . . ,−1︸ ︷︷ ︸
p times

+1, . . . ,+1︸ ︷︷ ︸
q times

) , (14.11)

where p+ q = n and we only assume n > 2.

If the metric is supposed to be isotropic at x0 then, in particular, the curvature tensor

at the origin must be invariant under Lorentz rotations. Now we know (i.e. you should
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know from your Special Relativity course) that the only invariants of the Lorentz group

are the Minkowski metric and products thereof, and the totally antisymmetric epsilon-

symbol. Thus the Riemann curvature tensor has to be of the form

Rijkl(x0) = aηijηkl + bηikηjl + cηilηjk + dǫijkl , (14.12)

where the last term is only possible for n = 4. The symmetries of the Riemann tensor

imply that a = d = b+ c = 0, and hence we are left with

Rijkl(x0) = b(ηikηjl − ηilηjk) , (14.13)

Thus in an arbitrary coordinate system we will have

Rijkl(x0) = b(gik(x0)gjl(x0) − gil(x0)gjk(x0)) , (14.14)

If we now assume that the space is isotropic around every point, then we can deduce

that

Rijkl(x) = b(x)(gik(x)gjl(x) − gil(x)gjk(x)) (14.15)

for some function b(x). Therefore the Ricci tensor and the Ricci scalar are

Rij(x) = (n− 1)b(x)gij

R(x) = n(n− 1)b(x) . (14.16)

and the Riemann curvature tensor can also be written as

Rijkl =
R

n(n− 1)
(gikgjl − gilgjk) , (14.17)

while the Einstein tensor is

Gij = b[(n− 1)(1 − n/2)]gij . (14.18)

The contracted Bianchi identity ∇iGij = 0 now implies that b(x) has to be a constant,

and we have thus established (14.10). Note that we also have

Rij = k(n− 1)gij , (14.19)

so that a maximally symmetric space(-time) is automatically a solution to the vacuum

Einstein equations with a cosmological constant. In the physically relevant case p = 1

these are known as de Sitter or anti de Sitter space-times. We will come back to them

later on. In general, solutions to the equation Rij = cgij for some constant c are known

as Einstein manifolds in the mathematics literature.
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14.4 The Metric of a Maximally Symmetric Space I

We are interested not just in the curvature tensor of a maximally symmetric space but in

the metric itself. I will give you two derivations of the metric of a maximally symmetric

space, one by directly solving the differential equation

Rij = k(n− 1)gij (14.20)

for the metric gij , the other by a direct geometrical construction of the metric which

makes the isometries of the metric manifest.

As a maximally symmetric space is in particular spherically symmetric, we already know

that we can write its metric in the form

ds2 = B(r)dr2 + r2dΩ2
(n−1) , (14.21)

where dΩ2
(n−1) = dθ2 + . . . is the volume-element for the (n − 1)-dimensional sphere or

its counterpart in other signatures. For concreteness, we now fix on n = 3, but the

argument given below goes through in general.

We have already calculated all the Christoffel symbols for such a metric (set A(r) = 0

in the calculations leading to the Schwarzschild metric in section 11), and we also know

that Rij = 0 for i 6= j and that all the diagonal angular components of the Ricci tensor

are determined by Rθθ by spherical symmetry. Hence we only need Rrr and Rθθ, which

are

Rrr =
1

r

B′

B

Rθθ = − 1

B
+ 1 +

rB′

2B2
, (14.22)

and we want to solve the equations

Rrr = 2kgrr = 2kB(r)

Rθθ = 2kgθθ = 2kr2 . (14.23)

From the first equation we obtain

B′ = 2krB2 , (14.24)

and from the second equation we deduce

2kr2 = − 1

B
+ 1 +

rB′

2B2

= − 1

B
+ 1 +

2kr2B2

2B2

= − 1

B
+ 1 + kr2 . (14.25)
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This is an algebraic equation for B solved by

B =
1

1 − kr2
(14.26)

(and this also solves the first equation). Therefore we have determined the metric of a

a maximally symmetric space to be

ds2 =
dr2

1 − kr2
+ r2dΩ2

(n−1) . (14.27)

Let us pass back from polar coordinates to Cartesian coordinates, with r2 = ~x2 =

ηijx
ixj . Then we have rdr = ~x.d~x and dr2 = (~x.d~x)2/~x2. Hence this metric can also be

written as

ds2 = d~x2 +
k(~x.d~x)2

1 − k~x2
. (14.28)

Clearly, for k = 0 this is just the flat metric on R
p,q. For k = 1, this should also look

familiar as the standard metric on the sphere. If not, don’t worry. We will discuss

the k 6= 0 metrics in more detail in the next section. This will make the isometries of

the metric manifest and will also exclude the possibility, not logically ruled out by the

arguments given so far, that the metrics we have found here for k 6= 0 are spherically

symmetric and have constant Ricci curvature but are not actually maximally symmetric.

14.5 The Metric of a Maximally Symmetric Space II

Recall that the standard metric on the n-sphere can be obtained by restricting the flat

metric on an ambient R
n+1 to the sphere. We will generalise this construction a bit to

allow for k < 0 and other signatures as well.

Consider a flat auxiliary vector space V of dimension (n+ 1) with metric

ds2 = d~x2 +
1

k
dz2 , (14.29)

whre ~x = (x1, . . . , xn) and d~x2 = ηijdx
idxj. Thus the metric on V has signature

(p, q + 1) for k positive and (p + 1, q) for k negative. The group G = SO(p, q + 1)

or G = SO(p + 1, q) has a natural action on V by isometries of the metric. The full

isometry group of V is the semi-direct product of this group with the Abelian group of

translations (just as in the case of the Euclidean or Poincaré group).

Now consider in V the hypersurface Σ defined by

k~x2 + z2 = 1 . (14.30)

This equation breaks all the translational isometries, but by the very definition of the

group G it leaves this equation, and therefore the hypersurface Σ. It follows that G will

act by isometries on Σ with its induced metric. But dimG = n(n+ 1)/2. Hence the n-

dimensional space has n(n+1)/2 Killing vectors and is therefore maximally symmetric.
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In fact, G acts transitively on Σ (thus Σ is homogeneous) and the stabilizer at a given

point is isomorphic to H = SO(p, q) (so Σ is isotropic), and therefore Σ can also be

described as the homogeneous space

Σk>0 = SO(p, q + 1)/SO(p, q)

Σk<0 = SO(p+ 1, q)/SO(p, q) . (14.31)

The Killing vectors of the induced metric are simply the restriction to Σ of the standard

generators of G on the vector space V .

It just remains to determine explicitly this induced metric. For this we start with the

defining relation of Σ and differentiate it to find that on Σ one has

dz = −k~x.d~x
z

, (14.32)

so that

dz2 =
k2(~x.d~x)2

1 − k~x2
. (14.33)

Thus the metric (14.29) restricted to Σ is

ds2|Σ = d~x2 +
1

k
dz2|Σ

= d~x2 +
k(~x.d~x)2

1 − k~x2
. (14.34)

This is precisely the same metric as we obtained in the previous section.

For Euclidean signature, these spaces are spheres and hyperspheres (hyperboloids), and

in other signatures they are the corresponding generalisations. In particular, for (p, q) =

(1, n − 1) we obtain de Sitter space-time for k = 1 and anti de Sitter space-time for

k = −1. They have the topology of Sn−1 × R and R
n−1 × S1 respectively and, as

mentioned before, they solve the vacuum Einstein equations with a positive (negative)

cosmological constant.

14.6 The Metric of a Maximally Symmetric Space III

Finally, it will be useful to see the maximally symmetric metrics in some other coordinate

systems. For k = 0, there is nothing new to say since this is just the flat metric. Thus

we focus on k 6= 0.

First of all, let us note that essentially only the sign of k matters as |k| only effects the

overall size of the space and nothing else (and can therefore be absorbed in the scale

factor a(t) of the metric (15.1)). To see this note that by rescaling of r, r′ = |k|1/2r, the

metric (14.27) can be put into the form

ds2 =
1

|k|(
dr′2

1 ± r′2
+ r′2dΩ2

(n−1)) . (14.35)
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Thus we will just need to consider the cases k = ±1.

For k = +1, we have

ds2 =
dr2

1 − r2
+ r2dΩ2

(n−1) . (14.36)

Thus, obviously the range of r is restricted to r ≤ 1 and by the change of variables

r = sinψ, the metric can be put into the standard form of the metric on Sn in polar

coordinates,

ds2 = dψ2 + sin2 ψdΩ2
(n−1) . (14.37)

This makes it clear that the singularity at r = 1 is just a coordinate singularity. It would

also appear if one wrote the metric on the two-sphere in terms of the radial coordinate

r = sin θ,

dΩ2 = dθ2 + sin2 θdφ2 =
dr2

1 − r2
+ r2dφ2 . (14.38)

For k = −1, on the other hand, we have

ds2 =
dr2

1 + r2
+ r2dΩ2

(n−1) . (14.39)

Thus the range of r is 0 ≤ r <∞, and we can use the change of variables r = sinhψ to

write the metric as

ds2 = dψ2 + sinh2 ψdΩ2
(n−1) . (14.40)

This is the standard metric of a hyperboloid Hn in polar coordinates.

Finally, by making the change of variables

r = r̄(1 + kr̄2/4)−1 , (14.41)

one can put the metric in the form

ds2 = (1 + kr̄2/4)−2(dr̄2 + r̄2dΩ2
(n−1)) . (14.42)

Note that this differs by the conformal factor (1 + kr̄2/4)−2 > 0 from the flat metric.

One says that such a metric is conformally flat. Thus what we have shown is that every

maximally symmetric space is conformally flat. Note that conformally flat, on the other

hand, does not imply maximally symmetric as the conformal factor could also be any

function of the radial and angular variables.
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15 Cosmology I: Basics

15.1 Preliminary Remarks

We now turn away from considering isolated systems (stars) to some (admittedly very

idealised) description of the universe as a whole. This subject is known as Cosmology.

It is certainly one of the most fascinating subjects of theoretical physics, dealing with

such issues as the origin and ultimate fate and the large-scale structure of the universe.

Due to the difficulty of performing cosmological experiments and making precise mea-

surements at large distances, many of the most basic questions about the universe are

still unanswered today:

1. Is our universe open or closed?

2. Will it keep expanding forever or will it recollapse?

3. Why is the Cosmic Microwave Background radiation so isotropic?

4. What is the mechanism responsible for structure formation in the universe?

5. Where and what is the ‘missing mass’ (Dark Matter)?

6. Why is the cosmological constant so small and what is its value?

7. Is Dark Energy, responsible for what appears to be a current phase of acceleration

of the universe, a cosmological constant?

While recent precision data, e.g. from supernovae surveys and detailed analysis of the

cosmic microwave background radiation, suggest answers to at least some of these ques-

tions, these answers actually just make the universe more myseterious than ever.

Of course, we cannot study any of these questions in detail, in particular because an

important role in studying these questions is played by the interaction of cosmology

with astronomy, astrophysics and elementary particle physics, each of these subjects

deserving at least a course of its own.

Fortunately, however, many of the important features any realistic cosmological model

should display are already present in some very simple models, the so-called Friedmann-

Robertson-Walker Models already studied in the 20’s and 30’s of the last century. They

are based on the simplest possible ansatz for the metric compatible with the assumption

that on large scales the universe is roughly homogeneous and isotropic (cf. the next

section for a more detailed discussion of this Cosmological Principle) and have become

the ‘standard model’ of cosmology.

We will see that they already display all the essential features such as
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1. a Big Bang

2. expanding universes (Hubble expansion)

3. different long-term behaviour (eternal expansion versus recollapse)

4. and the cosmological red-shift.

Our first aim will be to make maximal use of the symmetries that simple cosmological

models should have to find a simple ansatz for the metric. Our guiding principle will

be . . .

15.2 Fundamental Observations I: The Cosmological Principle

At first, it may sound impossibly difficult to find solutions of the Einstein equations

describing the universe as a whole. But: If one looks at the universe at large (very

large) scales, in that process averaging over galaxies and even clusters of galaxies, then

the situation simplifies a lot in several respects;

1. First of all, at those scales non-gravitational interactions can be completely ignored

because they are either short-range (the nuclear forces) or compensate each other

at large distances (electro-magnetism).

2. The earth, and our solar system, or even our galaxy, have no privileged position

in the universe. This means that at large scales the universe should look the same

from any point in the universe. Mathematically this means that there should be

translational symmetries from any point of space to any other, in other words,

space should be homogeneous.

3. Also, we assume that, at large scales, the universe looks the same in all directions.

Thus there should be rotational symmetries and hence space should be isotropic.

It thus follows from our discussion in section 14, that the n-dimensional space (of course

n = 3 for us) has n translational and n(n− 1)/2 rotational Killing vectors, i.e. that the

spatial metric is maximally symmetric. For n = 3, we will thus have six Killing vectors,

two more than for the Schwarzschild metric, and the ansatz for the metric will simplify

accordingly.

Note that since we know from observation that the universe expands, we do not require

a maximally symmetric space-time as this would imply that there is also a timelike

Killing vector and the resulting model for the universe would be static.

What simplifies life considerably is the fact that, as we have seen, there are only three

species of maximally symmetric spaces (for any n), namely flat space R
n, the sphere Sn,
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and its negatively curved counterpart, the n-dimensional pseudosphere or hyperboloid

we will call Hn.

Thus, for a space-time metric with maximally symmetric spacelike ‘slices’, the only

unknown is the time-dependence of the overall size of the metric. More concretely, the

metric can be chosen to be

ds2 = −dt2 + a2(t)(
dr2

1 − kr2
+ r2dΩ2) , (15.1)

where k = 0,±1 corresponds to the three possibilities mentioned above. Thus the

metric contains only one unknown function, the ‘radius’ or cosmic scale factor a(t).

This function will be determined by the Einstein equations via the matter content

of the universe (we will of course be dealing with a non-vanishing energy-momentum

tensor) and the equation of state for the matter.

15.3 Fundamental Observations II: Olbers’ Paradox

One paradox, popularised by Olbers (1826) but noticed before by others is the following.

He asked the seemingly innocuous question “Why is the sky dark at night?”. According

to his calculation, reproduced below, the sky should instead be infinitely bright.

The simplest assumption one could make in cosmology (prior to the discovery of the

Hubble expansion) is that the universe is static, infinite and homogeneously filled with

stars. In fact, this is probably the naive picture one has in mind when looking at

the stars at night, and certainly for a long time astronomers had no reason to believe

otherwise.

However, these simple assumptions immediately lead to a paradox, namely the conclu-

sion that the night-sky should be infinitely bright (or at least very bright) whereas, as

we know, the sky is actually quite dark at night. This is a nice example of how very

simple observations can actually tell us something deep about nature (in this case, the

nature of the universe). The argument runs as follows.

1. Assume that there is a star of brightness (luminosity) L at distance r. Then, since

the star sends out light into all directions, the apparent luminosity A (neglecting

absorption) will be

A(r) = L/4πr2 . (15.2)

2. If the number density ν of stars is constant, then the number of stars at distances

between r and r + dr is

dN(r) = 4πνr2dr . (15.3)

Hence the total energy density due to the radiation of all the stars is

E =

∫
∞

0
A(r)dN(r) = Lν

∫
∞

0
dr = ∞ . (15.4)
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3. Therefore the sky should be infinitely bright.

Now what is one to make of this? Clearly some of the assumptions in the above are

much too naive. The way out suggested by Olbers is to take into account absorption

effects and to postulate some absorbing interstellar medium. But this is also too naive

because in an eternal universe we should now be in a stage of thermal equilibrium.

Hence the postulated interstellar medium should emit as much energy as it absorbs, so

this will not reduce the radiant energy density either.

Of course, the stars themselves are not transparent, so they could block out light com-

pletely from distant sources. But if this is to rescue the situation, one would need to

postulate so many stars that every line of sight ends on a star, but then the night sky

would be bright (though not infinitely bright) and not dark.

Modern cosmological models can resolve this problem in a variety of ways. For instance,

the universe could be static but finite (there are such solutions, but this is nevertheless

an unlikely scenario) or the universe is not eternal since there was a ‘Big Bang’ (and

this is a more likely scenario).

15.4 Fundamental Observations III: The Hubble(-Lemâıtre) Expansion

We have already discussed one of the fundamental inputs of simple cosmological models,

namely the cosmological principle. This led us to consider space-times with maximally-

symmetric spacelike slices. One of the few other things that is definitely known about

the universe, and that tells us something about the time-dependence of the universe, is

that it expands or, at least that it appears to be expanding.

In fact, in the 1920’s and 1930’s, the astronomer Edwin Hubble made a remarkable

discovery regarding the motion of galaxies. He found that light from distant galaxies is

systematically red-shifted (increased in wave-length λ), the increase being proportional

to the distance d of the galaxy,

z :=
∆λ

λ
∝ d . (15.5)

Hubble interpreted this red-shift as due to a Doppler effect and therefore ascribed a

recessional velocity v = cz to the galaxy. While, as we will see, this pure Doppler shift

explanation is not tenable or at least not always the most useful way of phrasing things,

the terminology has stuck, and Hubble’s law can be written in the form

v = Hd , (15.6)

where H is Hubble’s constant. To set the historical record straight: credit for this

fundamental discovery should perhaps (also) go to G. Lemâıtre.7

7See e.g. M. Way, H. Nussbaumer, The linear redshift-distance relationship: Lematre beats Hubble by

two years, arXiv:1104.3031v1 [physics.hist-ph]; J.-P. Luminet, Editorial note to ”The beginning of

the world from the point of view of quantum theory”, arXiv:1105.6271v1 [physics.hist-ph].
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We will see later that in most cosmological models H is actually a function of time, so

the H in the above equation should then be interpreted as the value H0 of H today.

Actually, not only in cosmological toy-models but also in experiments, H is a function

of time, with estimates fluctuating rather wildly over the years. It is one of the main

goals of observational cosmology to determine H as precisely as possible, and the main

problem here is naturally a precise determination of the distances of distant galaxies.

Galactic distances are frequently measured in mega-parsecs (Mpc). A parsec is the

distance from which a star subtends an angle of 2 arc-seconds at the two diametrically

opposite ends of the earth’s orbit. This unit arose because of the old trigonometric

method of measuring stellar distances (a triangle is determined by the length of one

side and the two adjacent angles). 1 parsec is approximately 3 × 1018 cm, a little over

3 light-years. The Hubble constant is therefore often expressed in units of km s−1

(Mpc)−1. The best currently available estimates point to a value of H0 in the range

(using a standard parametrisation)

H0 = 100hkm/s/Mpc ,

h = 0.71 ± 0.06 . (15.7)

We will usually prefer to express it just in terms of inverse units of time. The above

result leads to an order of magnitude range of

H−1
0 ≈ 1010 years (15.8)

(whereas Hubble’s original estimate was more in the 109 year range).

15.5 Mathematical Model: the Robertson-Walker Metric

Having determined that the metric of a maximally symmetric space is of the simple

form (14.27), we can now deduce that a space-time metric satisfying the Cosmological

Principle can be chosen to be of the form (15.1),

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2dΩ2

]
. (15.9)

Here we have used the fact that (as in the ansatz for a spherically symmetric metric) non-

trival gtt and gtr can be removed by a coordinate transformation. This metric is known

as the Friedmann-Robertson-Walker metric or just the Robertson-Walker metric, and

spatial coordinates in which the metric takes this form are called comoving coordinates,

for reasons that will become apparent below.

The metric of the three-space at constant t is

gij = a2(t)g̃ij , (15.10)
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where g̃ij is the maximally symmetric spatial metric. Thus for k = +1, a(t) directly gives

the size (radius) of the universe. For k = −1, space is infinite, so no such interpretation

is possible, but nevertheless a(t) still sets the scale for the geometry of the universe, e.g.

in the sense that the curvature scalar R(3) of the metric gij is related to the curvature

scalar R̃(3) of g̃ij by

R(3)(t) =
1

a2(t)
R̃(3) . (15.11)

Finally, for k = 0, three-space is flat and also infinite, but one could replace R
3 by

a three-torus T 3 (still maximally symmetric and flat but now compact) and then a(t)

would once again be related directly to the size of the universe at constant t. Anyway,

in all cases, a(t) plays the role of a (and is known as the) cosmic scale factor.

Note that the case k = +1 opened up for the very first time the possibility of consider-

ing, even conceiving, an unbounded but finite universe! These and other generalisations

made possible by a general relativistic approach to cosmology are important as more

naive (Newtonian) models of the universe immediately lead to paradoxes or contradic-

tions (as we have seen e.g. in the discussion of Olbers’ paradox in section 15.3).

Let us now look at geodesics. Note that, since gtt = −1 is a constant, one has

Γµtt =
1

2
(2∂tgµt − ∂µgtt) = 0 . (15.12)

Therefore the vector field ∂t is geodesic, which can be expressed as the statement that

∇t∂t := Γµtt∂µ = 0 . (15.13)

In simpler terms this means that the curves ~x = const.,

τ → (~x(τ), t(τ)) = (~x0, τ) (15.14)

are geodesics. This also follows from the considerations around (2.48) in section 2.

Hence, in this coordinate system, observers remaining at fixed values of the spatial

coordinates are in free fall. In other words, the coordinate system is falling with them

or comoving, and the proper time along such geodesics coincides with the coordinate

time, dτ = dt. It is these observers of constant ~x or constant (r, θ, φ) who all see the

same isotropic universe at a given value of t.

This may sound a bit strange but a good way to visualise such a coordinate system is,

as in Figure 20, as a mesh of coordinate lines drawn on a balloon that is being inflated

or deflated (according to the behaviour of a(t)). Draw some dots on that balloon (that

will eventually represent galaxies or clusters of galaxies). As the ballon is being inflated

or deflated, the dots will move but the coordinate lines will move with them and the

dots remain at fixed spatial coordinate values. Thus, as we now know, regardless of the

behaviour of a(t), these dots follow a geodesic, and we will thus think of galaxies in this

description as being in free fall.
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Figure 20: Illustration of a comoving coordinate system: Even though the sphere (uni-

verse) expands, the X’s (galaxies) remain at the same spatial coordinates. These tra-

jectories are geodesics and hence the X’s (galaxies) can be considered to be in free fall.

The figure also shows that it is the number density per unit coordinate volume that is

conserved, not the density per unit proper volume.

Note that this immediately implies a crude distance - velocity relation reminiscent of

Hubble’s law. Namely, let us ego- or geocentrically place ourselves at the origin r = 0

(remember that because of maximal symmetry this point is as good as any other and

in no way privileged). Consider another galaxy following the comoving geodesic at the

fixed value r = r1. Its “instantaneous” proper distance R1(t) at time t can be calculated

from

dR = a(t)
dr

(1 − kr2)1/2
. (15.15)

Choosing k = 0 for simplicity, this can be integrated to

R1(t) = a(t)r1 . (15.16)

It follows that

V1(t) ≡
d

dt
R1(t) = ȧ(t)r1 = H(t)R1(t) , (15.17)

where we have introduced the Hubble parameter

H(t) =
ȧ(t)

a(t)
. (15.18)

The relation (15.17) clearly expresses something like Hubble’s law v = Hd (15.6): all

objects run away from each other with velocities proportional to their distance. We

will have much more to say about H(t), and about the relation between distance and

red-shift z, below.
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Another advantage of the comoving coordinate system is that the six-parameter family

of isometries just acts on the spatial part of the metric. Indeed, let Ki∂i be a Killing

vector of the maximally symmetric spatial metric. Then Ki∂i is also a Killing vector

of the Robertson-Walker metric. This would not be the case if one had e.g. made an

x-dependent coordinate transformation of t or a t-dependent coordinate transformation

of the xi. In those cases there would of course still be six Killing vectors, but they would

have a more complicated form.

15.6 * Area Measurements in a Robertson-Walker Metric and Number

Counts

The aim of this and the subsequent sections is to learn as much as possible about the

general properties of Robertson-Walker geometries (without using the Einstein equa-

tions) with the aim of looking for observational means of distinguishing e.g. among the

models with k = 0,±1.

To get a feeling for the geometry of the Schwarzschild metric, we studied the properties

of areas and lengths in the Schwarzschild geometry. Length measurements are rather

obvious in the Robertson-Walker geometry, so here we focus on the properties of areas.

We write the spatial part of the Robertson-Walker metric in polar coordinates as

ds2 = a2[dψ2 + f2(ψ)dΩ2] , (15.19)

where f(ψ) = ψ, sinψ, sinhψ for k = 0,+1,−1. Now the radius of a surface ψ = ψ0

around the point ψ = 0 (or any other point, our space is isotropic and homogeneous) is

given by

ρ = a

∫ ψ0

0
dψ = aψ0 . (15.20)

On the other hand, the area of this surface is determined by the induced metric

a2f2(ψ0)dΩ
2 and is

A(ρ) = a2f2(ψ0)

∫ 2π

0
dφ

∫ π

0
dθ sin θ = 4πa2f2(ρ/a) . (15.21)

For k = 0, this is just the standard behaviour

A(ρ) = 4πρ2 , (15.22)

but for k = ±1 the geometry looks quite different.

For k = +1, we have

A(ρ) = 4πa2 sin2(ρ/a) . (15.23)

Thus the area reaches a maximum for ρ = πa/2 (or ψ = π/2), then decreases again for

larger values of ρ and goes to zero as ρ→ πa. Already the maximal area, Amax = 4πa2
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Figure 21: Visualisation of the k = +1 Robertson-Walker geometry via a two-sphere

of unit radius: Circles of radius ψ, measured along the two-sphere, have an area which

grows at first, reaches a maximum at ψ = π/2 and goes to zero when ψ → π. E.g.

the maximum value of the circumference, at ψ = π/2, namely 2π, is much smaller

than the circumference of a circle with the same radius π/2 in a flat geometry, namely

2π×π/2 = π2. Only for ψ very small does one approximately see a standard Euclidean

geometry.

is much smaller than the area of a sphere of the same radius in Euclidean space, which

would be 4πρ2 = π3a2.

This behaviour is best visualised by replacing the three-sphere by the two-sphere and

looking at the circumference of circles as a function of their distance from the origin

(see Figure 21).

For k = −1, we have

A(ρ) = 4πa2 sinh2(ρ/a) , (15.24)

so in this case the area grows much more rapidly with the radius than in flat space.

In principle, this distinct behaviour of areas in the models with k = 0,±1 might allow

for an empirical determination of k. For instance, one might make the assumption that

there is a homogeneous distribution of the number and brightness of galaxies, and one

could try to determine observationally the number of galaxies as a function of their

apparent luminosity. As in the discussion of Olbers’ paradox, the radiation flux would
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be proportional to F ∝ 1/ρ2. In Euclidean space (k = 0), one would expect the number

N(F ) of galaxies with flux greater than F , i.e. distances less than ρ to behave like ρ3,

so that the expected Euclidean behaviour would be

N(F ) ∝ F−3/2 . (15.25)

Any empirical departure from this behaviour could thus be an indication of a universe

with k 6= 0, but clearly, to decide this, many other factors (red-shift, evolution of stars,

etc.) have to be taken into account and so far it has been impossible to determine the

value of k in this way.

15.7 The Cosmological Red-Shift

The most important information about the cosmic scale factor a(t) comes from the

observation of shifts in the frequency of light emitted by distant sources. To calculate

the expected shift in a Robertson-Walker geometry, let us again place ourselves at the

origin r = 0. We consider a radially travelling electro-magnetic wave (a light ray) and

consider the equation dτ2 = 0 or

dt2 = a2(t)
dr2

1 − kr2
. (15.26)

Let us assume that the wave leaves a galaxy located at r = r1 at the time t1. Then it

will reach us at a time t0 given by

f(r1) =

∫ 0

r1

dr√
1 − kr2

=

∫ t0

t1

dt

a(t)
. (15.27)

As typical galaxies will have constant coordinates, f(r1) (which can of course be given

explicitly, but this is not needed for the present analysis) is time-independent. If the

next wave crest leaves the galaxy at r1 at time t1 + δt1, it will arrive at a time t0 + δt0

determined by

f(r1) =

∫ t0+δt0

t1+δt1

dt

a(t)
. (15.28)

Subtracting these two equations and making the (eminently reasonable) assumption

that the cosmic scale factor a(t) does not vary significantly over the period δt given by

the frequency of light, we obtain

δt0
a(t0)

=
δt1
a(t1)

. (15.29)

Indeed, say that b(t) is the integral of 1/a(t). Then we have

b(t0 + δt0) − b(t1 + δt1) = b(t0) − b(t1) , (15.30)

and Taylor expanding to first order, we obtain

b′(t0)δt0 = b′(t1)δt1 , (15.31)
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which is the same as (15.29). Therefore the observed frequency ν0 is related to the

emitted frequency ν1 by
ν0

ν1
=
a(t1)

a(t0)
. (15.32)

Astronomers like to express this in terms of the red-shift parameter (see the discussion

of Hubble’s law above)

z =
λ0 − λ1

λ1
, (15.33)

which in view of the above result we can write as

z =
a(t0)

a(t1)
− 1 . (15.34)

Thus if the universe expands one has z > 0 and there is a red-shift while in a contracting

universe with a(t0) < a(t1) the light of distant glaxies would be blue-shifted.

A few remarks on this result:

1. This cosmological red-shift has nothing to do with the star’s own gravitational

field - that contribution to the red-shift is completely negligible compared to the

effect of the cosmological red-shift.

2. Unlike the gravitational red-shift we discussed before, this cosmological red-shift

is symmetric between receiver and emitter, i.e. light sent from the earth to the

distant galaxy would likewise be red-shifted if we observe a red-shift of the distant

galaxy.

3. This red-shift is a combined effect of gravitational and Doppler red-shifts and,

without additional choices and input, it is not very meaningful to separate this into

the two and/or to interpret this only in terms of, say, a Doppler shift. Nevertheless,

as mentioned before, astronomers like to do just that, calling v = zc the recessional

velocity.8

4. Nowadays, astronomers tend to express the distance of a galaxy not in terms of

light-years or megaparsecs, but directly in terms of the observed red-shift factor

z, the conversion to distance then following from some version of Hubble’s law.

5. The largest observed redshift of a galaxy is currently z ≈ 10, corresponding to a

distance of the order of 13 billion light-years, while the cosmic microwave back-

ground radiation, which originated just a couple of 100.000 years after the Big

Bang, has z > 1000.

8For a lucid discussion of this issue, actually arguing in favour of the pure Doppler interpretation,

see E. Bunn, D. Hogg, The kinematic origin of the cosmological redshift, arXiv:0808.1081.
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15.8 The Red-Shift Distance Relation (Hubble’s Law)

We have seen that there is a cosmological red-shift in Robertson-Walker geometries. Our

aim will now be to see if and how these geometries are capable of explaining Hubble’s

law that the red-shift is approximately proportional to the distance and how the Hubble

constant is related to the cosmic scale factor a(t).

Reliable data for cosmological red-shifts as well as for distance measurements are only

available for small values of z, and thus we will consider the case where t0 − t1 and r1

are small, i.e. small at cosmic scales. First of all, this allows us to expand a(t) in a

Taylor series,

a(t) = a(t0) + (t− t0)ȧ(t0) + 1
2 (t− t0)

2ä(t0) + . . . (15.35)

Let us introduce the Hubble parameter H(t) (which already made a brief appearance in

section 15.5) and the deceleration parameter q(t) by

H(t) =
ȧ(t)

a(t)

q(t) = −a(t)ä(t)
ȧ(t)2

, (15.36)

and denote their present day values by a subscript zero, i.e. H0 = H(t0) and q0 = q(t0).

H(t) measures the expansion velocity as a function of time while q(t) measures whether

the expansion velocity is increasing or decreasing. We will also denote a0 = a(t0) and

a(t1) = a1.

In terms of these parameters, the Taylor expansion can be written as

a(t) = a0(1 +H0(t− t0) − 1
2q0H

2
0 (t− t0)

2 + . . .) . (15.37)

This gives us the red-shift parameter z as a power series in the time of flight, namely

1

1 + z
=
a1

a0
= 1 + (t1 − t0)H0 − 1

2q0H
2
0 (t1 − t0)

2 + . . . (15.38)

or

z = (t0 − t1)H0 + (1 + 1
2q0)H

2
0 (t0 − t1)

2 + . . . (15.39)

For small H0(t0 − t1) this can be inverted,

t0 − t1 =
1

H0
[z − (1 + 1

2q0)z
2 + . . .] . (15.40)

We can also use (15.27) to express (t0 − t1) in terms of r1. On the one hand we have

∫ t0

t1

dt

a(t)
= r1 + O(r31) , (15.41)
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while expanding a(t) in the denominator we get

∫ t0

t1

dt

a(t)
=

1

a0

∫ t0

t1

dt

(1 + (t− t0)H0 + . . .)

=
1

a0

∫ t0

t1

dt [1 + (t0 − t)H0 + . . .]

=
1

a0
[(t0 − t1) + t0(t0 − t1)H0 − 1

2 (t20 − t21)H0 + . . .]

=
1

a0
[(t0 − t1) + 1

2(t0 − t1)
2H0 + . . .] . (15.42)

Therefore we obtain

r1 =
1

a0
[(t0 − t1) + 1

2(t0 − t1)
2H0 + . . .] . (15.43)

Using (15.40), we obtain

r1 =
1

a0H0
[z − 1

2 (1 + q0)z
2 + . . .] . (15.44)

This clearly indicates to first order a linear dependence of the red-shift on the distance

of the galaxy and identifies H0, the present day value of the Hubble parameter, as being

at least proportional to the Hubble constant introduced in (15.6).

However, this is not yet a very useful way of expressing Hubble’s law. First of all, the

distance a0r1 that appears in this expression is not the proper distance (unless k = 0),

but is at least equal to it in our approximation. Note that a0r1 is the present distance

to the galaxy, not the distance at the time the light was emitted.

However, even proper distance is not directly measurable and thus, to compare this

formula with experiment, one needs to relate r1 to the measures of distance used by as-

tronomers. One practical way of doing this is the so-called luminosity distance dL. If for

some reasons one knows the absolute luminosity of a distant star (for instance because it

shows a certain characteristic behaviour known from other stars nearby whose distances

can be measured by direct means - such objects are known as standard candles), then

one can compare this absolute luminosity L with the apparent luminosity A. Then one

can define the luminosity distance dL by (cf. (15.2))

d2
L =

L

4πA
. (15.45)

We thus need to relate dL to the coordinate distance r1. The key relation is

A

L
=

1

4πa2
0r

2
1

1

1 + z

a1

a0
=

1

4πa2
0r

2
1(1 + z)2

. (15.46)

Here the first factor arises from dividing by the area of the sphere at distance a0r1 and

would be the only term in a flat geometry (see the discssion of Olbers’ paradox). In

a Robertson-Walker geometry, however, the photon flux will be diluted. The second
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factor is due to the fact that each individual photon is being red-shifted. And the third

factor (identical to the second) is due to the fact that as a consequence of the expansion

of the universe, photons emitted a time δt apart will be measured a time (1+z)δt apart.

Hence the relation between r1 and dL is

dL = (L/4πA)1/2 = r1a(t0)(1 + z) . (15.47)

Intuitively, the fact that for z positive dL is larger than the actual (proper) distance of

the galaxy can be understood by noting that the gravitational red-shift makes an object

look darker (further away) than it actually is.

This can be inserted into (15.44) to give an expression for the red-shift in terms of dL,

Hubble’s law

dL = H−1
0 [z + 1

2 (1 − q0)z
2 + . . .] . (15.48)

The program would then be to collect as much astronomical information as possible on

the relation between dL and z in order to determine the parameters q0 and H0.
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16 Cosmology II: Basics of Friedmann-Robertson-Walker Cosmol-

ogy

So far, we have only used the kinematical framework provided by the Robertson-Walker

metrics and we never used the Einstein equations. The benefit of this is that it allows one

to deduce relations betweens observed quantities and assumptions about the universe

which are valid even if the Einstein equations are not entirely correct, perhaps because

of higher derivative or other quantum corrections in the early universe.

Now, on the other hand we will have to be more specific, specify the matter content and

solve the Einstein equations for a(t). We will see that a lot about the solutions of the

Einstein equations can already be deduced from a purely qualitative analysis of these

equations, without having to resort to explicit solutions (Chapter 17). Exact solutions

will then be the subject of Chapter 18.

16.1 The Ricci Tensor of the Robertson-Walker Metric

Of course, the first thing we need to discuss solutions of the Einstein equations is

the Ricci tensor of the Robertson-Walker (RW) metric. Since we already know the

curvature tensor of the maximally symmetric spatial metric entering the RW metric

(and its contractions), this is not difficult.

1. First of all, we write the RW metric as

ds2 = −dt2 + a2(t)g̃ijdx
idxj . (16.1)

From now on, all objects with a tilde, ,̃ will refer to three-dimensional quantities

calculated with the metric g̃ij .

2. One can then calculate the Christoffel symbols in terms of a(t) and Γ̃ijk. The

non-vanishing components are (we had already established that Γµ00 = 0)

Γijk = Γ̃ijk

Γij0 =
ȧ

a
δij

Γ0
ij = ȧag̃ij

(16.2)

3. The relevant components of the Riemann tensor are

Ri0j0 = − ä
a
δij

R0
i0j = aäg̃ij

Rkikj = R̃ij + 2ȧ2g̃ij . (16.3)
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4. Now we can use R̃ij = 2kg̃ij (a consequence of the maximal symmetry of g̃ij) to

calculate Rµν . The non-zero components are

R00 = −3
ä

a

Rij = (aä+ 2ȧ2 + 2k)g̃ij

= (
ä

a
+ 2

ȧ2

a2
+

2k

a2
)gij . (16.4)

5. Thus the Ricci scalar is

R =
6

a2
(aä+ ȧ2 + k) , (16.5)

and

6. the Einstein tensor has the components

G00 = 3(
ȧ2

a2
+

k

a2
)

G0i = 0

Gij = −(
2ä

a
+
ȧ2

a2
+

k

a2
)gij . (16.6)

16.2 The Matter Content: A Perfect Fluid

Next we need to specify the matter content. On physical grounds one might like to argue

that in the approximation underlying the cosmological principle galaxies (or clusters)

should be treated as non-interacting particles or a perfect fluid. As it turns out, we do

not need to do this as the symmetries of the metric fix the energy-momentum tensor to

be that of a perfect fluid anyway.

Below, I will give a formal argument for this using Killing vectors. But informally we can

already deduce this from the structure of the Einstein tensor obtained above. Comparing

(16.6) with the Einstein equation Gµν = 8πGTµν , we deduce that the Einstein equations

can only have a solution with a Robertson-Walker metric if the energy-momentum tensor

is of the form

T00 = ρ(t)

T0i = 0

Tij = p(t)gij , (16.7)

where p(t) and ρ(t) are some functions of time.

Here is the formal argument. It is of course a consequence of the Einstein equations that any

symmetries of the Ricci (or Einstein) tensor also have to be symmetries of the energy-momentum

tensor. Now we know that the metric g̃ij has six Killing vectors K(a) and that (in the comoving

coordinate system) these are also Killing vectors of the RW metric,

LK(a) g̃ij = 0 ⇒ LK(a)gµν = 0 . (16.8)

227



Therefore also the Ricci and Einstein tensors have these symmetries,

LK(a)gµν = 0 ⇒ LK(a)Rµν = 0 , LK(a)Gµν = 0 . (16.9)

Hence the Einstein equations imply that Tµν should have these symmetries,

LK(a)Gµν = 0 ⇒ LK(a)Tµν = 0 . (16.10)

Moreover, since the LK(a) act like three-dimensional coordinate transformations, in order to

see what these conditions mean we can make a (3 + 1)-decomposition of the energy-momentum

tensor. From the three-dimensional point of view, T00 transforms like a scalar under coordinate

transformations (and Lie derivatives), T0i like a vector, and Tij like a symmetric tensor. Thus

we need to determine what are the three-dimensional scalars, vectors and symmetric tensors

that are invariant under the full six-parameter group of the three-dimensional isometries.

For scalars φ we thus require (calling K now any one of the Killing vectors of g̃ij),

LKφ = Ki∂iφ = 0 . (16.11)

But since Ki(x) can take any value in a maximally symmetric space (homogeneity), this implies

that φ has to be constant (as a function on the three-dimensional space) and therefore T00 can

only be a function of time,

T00 = ρ(t) . (16.12)

For vectors, it is almost obvious that no invariant vectors can exist because any vector would

single out a particular direction and therefore spoil isotropy. The formal argument (as a warm

up for the argument for tensors) is the following. We have

LKV
i = Kj∇̃jV

i + V j∇̃jK
i . (16.13)

We now choose the Killing vectors such that Ki(x) = 0 but ∇̃iKj ≡ Kij is an arbitrary

antisymmetric matrix. Then the first term disappears and we have

LKV
i = 0 ⇒ KijV

j = 0 . (16.14)

To make the antisymmetry manifest, we rewrite this as

KijV
j = Kkjδ

k
iV

j = 0 . (16.15)

If this is to hold for all antisymmetric matrices, we must have

δk
iV

j = δj
iV

k , (16.16)

and by contraction one obtains nV j = V j , and hence Vj = 0. Therefore, as expected, there is

no invariant vector field and

T0i = 0 . (16.17)

We now come to symmetric tensors. Once again we choose our Killing vectors to vanish at a

given point x and such that Kij is an arbitrary antisymmetric matrix. Then the condition

LKTij = Kk∇̃kTij + ∇̃iK
kTkj + ∇̃jK

kTik = 0 (16.18)
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reduces to

Kmn(g̃mkδn
iTkj + g̃mkδn

jTik) = 0 . (16.19)

If this is to hold for all antisymmetric matrices Kmn, the antisymmetric part of the term in

brackets must be zero or, in other words, it must be symmetric in the indices m and n, i.e.

g̃mkδn
iTkj + g̃mkδn

jTik = g̃nkδm
i Tkj + g̃nkδm

j Tik . (16.20)

Contracting over the indices n and i, one obtains

ng̃mkTkj + g̃mkTjk = g̃mkTkj + δm
j T

k
k . (16.21)

Therefore

Tij =
g̃ij

n
T k

k . (16.22)

But we already know that the scalar T k
k has to be a constant. Thus we conclude that the only

invariant tensor is the metric itself, and therefore the Tij-components of the energy-momentum

tensor can only be a function of t times g̃ij . Writing this function as p(t)a2(t), we arrive at

Tij = p(t)gij . (16.23)

We thus see that the energy-momentum tensor is determined by two functions, ρ(t) and p(t).

A covariant way of writing this tensor is as

Tµν = (p + ρ)uµuν + pgµν , (16.24)

where uµ = (1, 0, 0, 0) in a comoving coordinate system. This is precisely the energy-

momentum tensor of a perfect fluid. uµ is known as the velocity field of the fluid, and

the comoving coordinates are those with respect to which the fluid is at rest. ρ is the

energy-density of the perfect fluid and p is the pressure.

In general, this matter content has to be supplemented by an equation of state. This is

usually assumed to be that of a barytropic fluid, i.e. one whose pressure depends only

on its density, p = p(ρ). The most useful toy-models of cosmological fluids arise from

considering a linear relationship between p and ρ, of the type

p = wρ , (16.25)

where w is known as the equation of state parameter. Occasionally also more exotic

equations of state are considered.

For non-interacting particles, there is no pressure, p = 0, i.e. w = 0, and such matter is

usually referred to as dust.

The trace of the energy-momentum tensor is

T µµ = −ρ+ 3p . (16.26)

For radiation, for example, the energy-momentum tensor is (like that of Maxwell theory)

traceless, and hence radiation has the equation of state

p = ρ/3 , (16.27)
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and thus w = 1/3.

For physical (gravitating instead of anti-gravitating) matter one usually requires ρ > 0

(positive energy) and either p > 0, corresponding to w > 0 or, at least, ρ + 3p > 0,

corresponding to the weaker condition w > −1/3.

A cosmological constant Λ, on the other hand, corresponds, as we will see, to a matter

contribution with w = −1 and thus violates either ρ > 0 or ρ+ 3p > 0.

16.3 Conservation Laws

The same arguments as above show that a current Jµ in a Robertson-Walker metric

has to be of the form Jµ = (n(t), 0, 0, 0) in comoving coordinates, or

Jµ = n(t)uµ (16.28)

in covariant form. Here n(t) could be a number density like a galaxy number density.

It gives the number density per unit proper volume. The conservation law ∇µJ
µ = 0 is

equivalent to

∇µJ
µ = 0 ⇔ ∂t(

√
gn(t)) = 0 . (16.29)

Thus we see that n(t) is not constant, but the number density per unit coordinate

volume is (as we had already anticipated in the picture of the balloon, Figure 20). For a

RW metric, the time-dependent part of
√
g is a(t)3, and thus the conservation law says

n(t)a(t)3 = const. (16.30)

Let us now turn to the conservation laws associated with the energy-momentum tensor,

∇µT
µν = 0 . (16.31)

The spatial components of this conservation law,

∇µT
µi = 0 , (16.32)

turn out to be identically satisfied, by virtue of the fact that the uµ are geodesic and

that the functions ρ and p are only functions of time. This could hardly be otherwise

because ∇µT
µi would have to be an invariant vector, and we know that there are none

(nevertheless it is instructive to check this explicitly).

The only interesting conservation law is thus the zero-component

∇µT
µ0 = ∂µT

µ0 + ΓµµνT
ν0 + Γ0

µνT
µν = 0 , (16.33)

which for a perfect fluid becomes

∂tρ(t) + Γµµ0ρ(t) + Γ0
00ρ(t) + Γ0

ijT
ij = 0 . (16.34)
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Inserting the explicit expressions (16.2) for the Christoffel symbols, this becomes

ρ̇ = −3(ρ+ p)
ȧ

a
. (16.35)

For instance, when the pressure of the cosmic matter is negligible, like in the universe

today, and we can treat the galaxies (without disrespect) as dust, then one has

ρ̇

ρ
= −3

ȧ

a
, (16.36)

and this equation can trivially be integrated to

ρ(t)a(t)3 = const. (16.37)

On the other hand, if the universe is dominated by, say, radiation, then one has the

equation of state p = ρ/3, and the conservation equation reduces to

ρ̇

ρ
= −4

ȧ

a
, (16.38)

and therefore

ρ(t)a(t)4 = const. (16.39)

The reason why the energy density of photons decreases faster with a(t) than that of

dust is of course . . . the red-shift.

More generally, for matter with equation of state parameter w one finds

ρ(t)a(t)3(1+w) = const. (16.40)

In particular, for w = −1, ρ is constant and corresponds, as we will see more explic-

itly below, to a cosmological constant Λ. This can also be deduced by comparing the

covariant form (16.24) of the energy-momentum tensor with the contribution of a cos-

mological constant to the Einstein equations, which is proportional to gµν . By (16.24)

this implies p = −ρ.

16.4 The Einstein and Friedmann Equations

After these preliminaries, we are now prepared to tackle the Einstein equations. We

allow for the presence of a cosmological constant and thus consider the equations

Gµν + Λgµν = 8πGTµν . (16.41)

It will be convenient to rewrite these equations in the form

Rµν = 8πG(Tµν − 1
2gµνT

λ
λ) + Λgµν . (16.42)
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Because of isotropy, there are only two independent equations, namely the 00-component

and any one of the non-zero ij-components. Using (16.4), we find

−3
ä

a
= 4πG(ρ + 3p) − Λ

ä

a
+ 2

ȧ2

a2
+ 2

k

a2
= 4πG(ρ − p) + Λ . (16.43)

We supplement this by the conservation equation

ρ̇ = −3(ρ+ p)
ȧ

a
. (16.44)

Using the first equation to eliminate ä from the second, one obtains the set of equations

(F1) ȧ2

a2
+ k

a2
= 8πG

3 ρ+ Λ
3

(F2) −3 äa = 4πG(ρ + 3p) − Λ

(F3) ρ̇ = −3(ρ+ p) ȧa

(16.45)

Together, these are known as the Friedmann equations. They govern every aspect of

Friedmann-Robertson-Walker cosmology. From now on I will simply refer to them as

equations (F1), (F2), (F3) respectively. In terms of the Hubble parameter H(t) and the

deceleration parameter q(t), these equations can also be written as

(F1′) H2 = 8πG
3 ρ− k

a2
+ Λ

3

(F2′) q = 1
3H2 [4πG(ρ + 3p) − Λ]

(F3′) d
dt(ρa

3) = −3Hpa3 .

Note that because of the Bianchi identities, the Einstein equations and the conservation

equations should not be independent, and indeed they are not.

It is easy to see that (F1) and (F3) imply the second order equation (F2) so that, a

pleasant simplification, in practice one only has to deal with the two first order equations

(F1) and (F3). Sometimes, however, (F2) is easier to solve than (F1), because it is linear

in ä(t), and then (F1) is just used to fix one constant of integration.

It is also equally to see that (F1) and (F2) imply (F3), i.e. that the gravity equations

of motion imply the matter equations of motion, a general and fundamental feature of

general relativity.

Finally, formally (F2) and (F3) also imply (F1), with k (which only appears in (F1))

arising as an integration constant.

232



17 Cosmology III: Qualitative Analysis

A lot can be deduced about the solutions of the Friedmann equations, i.e. the evolution

of the universe in the Friedmann-Robertson-Walker cosmologies, without solving the

equations directly and even without specifying a precise equation of state, i.e. a relation

between p and ρ. In the following we will, in turn, discuss the Big Bang, the age of

the universe, and its long term behaviour, from this qualitative point of view. I will

then introduce the notions of critical density and density parameters, and discuss the

structure of the universe, as we understand it today, in these terms.

17.1 The Big Bang

One amazing thing about the FRW models is that all of them (provided that the matter

content is reasonably physical) predict an initial singularity, commonly known as a Big

Bang. This is very easy to see.

(F2) shows that, as long as the right-hand-side is positive, one has q > 0, i.e. ä < 0

so that the universe is decelerating due to gravitational attraction. This is for instance

the case when there is no cosmological constant and ρ+ 3p is positive (and this is the

case for all physical matter). It is also true for a negative cosmological constant (its

negative energy density being outweighed by 3 times its positive pressure). It need not

be true, however, in the presence of a positive cosmological constant which provides an

accelerating contribution to the expansion of the universe. We will, for the time being,

continue with the assumption that Λ is zero or, at least, non-positive, even though, as

we will discuss later, recent evidence (strongly) suggests the presence of a non-negligible

positive cosmological constant in our universe today.

Since a > 0 by definition, ȧ(t0) > 0 because we observe a red-shift, and ä < 0 because

ρ+ 3p > 0, it follows that there cannot have been a turning point in the past and a(t)

must be concave downwards. Therefore a(t) must have reached a = 0 at some finite

time in the past. We will call this time t = 0, a(0) = 0.

As ρa4 is constant for radiation (an appropriate description of earlier periods of the

universe), this shows that the energy density grows like 1/a4 as a → 0 so this leads to

quite a singular situation.

Once again, as in our discussion of black holes, it is natural to wonder at this point

if the singularities predicted by General Relativity in the case of cosmological models

are generic or only artefacts of the highly symmetric situations we were considering.

And again there are singularity theorems applicable to these situations which state

that, under reasonable assumptions about the matter content, singularities will occur

independently of assumptions about symmetries.
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17.2 The Age of the Universe

With the normalisation a(0) = 0, it is fair to call t0 the age of the universe. If ä had

been zero in the past for all t ≤ t0, then we would have

ä = 0 ⇒ a(t) = a0t/t0 , (17.1)

and

ȧ(t) = a0/t0 = ȧ0 . (17.2)

This would determine the age of the universe to be

t0 =
a0

ȧ0
= H−1

0 , (17.3)

where H−1
0 is the Hubble time. However, provided that ä < 0 for t ≤ t0 (as discussed

above, this holds under suitable conditions on the matter content - which may or may

not be realised in our universe), the actual age of the universe must be smaller than

this,

ä < 0 ⇒ t0 < H−1
0 . (17.4)

Thus the Hubble time sets an upper bound on the age of the universe. See Figure 22

for an illustration of this.

17.3 Long Term Behaviour

Let us now try to take a look into the future of the universe. Again we will see that

it is remarkably simple to extract relevant information from the Friedmann equations

without ever having to solve an equation.

We will assume that Λ = 0 and that we are dealing with physical matter with w > −1/3.

The Friedmann equation (F1) can be written as

ȧ2 =
8πG

3
ρa2 − k . (17.5)

The left-hand-side is manifestly non-negative. Let us see what this tells us about the

right-hand-side. Focus on the first term ∼ ρa2. This term is strictly positive and,

according to (16.40), behaves as

ρa2 ∼ a−3(1+w)+2 = a−(1+3w) . (17.6)

Thus for physical matter the exponent is negative, so that if and when the cosmic scale

factor a(t) goes to infinity, one has

lim
a→∞

ρa2 = 0 . (17.7)
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Now let us look at the second term on the right-hand-side of (17.5), and analyse the 3

choices for k. For k = −1 or k = 0, the right hand side of (17.5) is strictly positive.

Therefore ȧ is never zero and since ȧ0 > 0, we must have

ȧ(t) > 0 ∀ t . (17.8)

Thus we can immediately conclude that open and flat universes must expand forever,

i.e. they are open in space and time.

By taking into account (17.7), we can even be somewhat more precise about the long

term behaviour. For k = 0, we learn that

k = 0 : lim
a→∞

ȧ2 = 0 . (17.9)

Thus the universe keeps expanding but more and more slowly as time goes on. By the

same reasoning we see that for k = −1 we have

k = −1 : lim
a→∞

ȧ2 = 1 . (17.10)

Thus the universe keeps expanding, reaching a constant limiting velocity.

For k = +1, validity of (17.7) would lead us to conclude that ȧ2 → −1, but this is

obviously a contradiction. Therefore we learn that the k = +1 universes never reach

a→ ∞ and that there is therefore a maximal radius amax. This maximal radius occurs

for ȧ = 0 and therefore

k = +1 : a2
max =

3

8πGρ
. (17.11)

Note that intuitively this makes sense. For larger ρ or larger G the gravitational attrac-

tion is stronger, and therefore the maximal radius of the universe will be smaller. Since

we have ä < 0 also at amax, again there is no turning point and the universe recontracts

back to zero size leading to a Big Crunch. Therefore, spatially closed universes (k = +1)

with physical matter are also closed in time. All of these findings are summarised in

Figure 22.

If the cosmological constant Λ is not zero, this correspondence “(open/closed) in space

⇔ (open/closed) in time” is no longer necessarily true.

17.4 Density Parameters and the Critical Density

The primary purpose of this section is to introduce some convenient and commonly used

notation and terminology in cosmology associated with the Friedmann equation (F1’).

We will now include the cosmological constant in our analysis. For starters, however,

let us again consider the case Λ = 0. (F1’) can be written as

8πGρ

3H2
− 1 =

k

a2H2
. (17.12)
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a(t)

tt=0

k=+1

k=0

k=-1

t 0

H0
-1

Figure 22: Qualitative behaviour of the Friedmann-Robertson-Walker models for Λ = 0.

All models start with a Big Bang. For k = +1 the universe reaches a maximum radius

and recollapses after a finite time. For k = 0, the universe keeps expanding but the

expansion velocity tends to zero for t → ∞ or a → ∞. For k = −1, the expansion

velocity approaches a non-zero constant value. Also shown is the significance of the

Hubble time for the k = +1 universe showing clearly that H−1
0 gives an upper bound

on the age of the universe.
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If one defines the critical density ρcr by

ρcr =
3H2

8πG
, (17.13)

and the density parameter Ω by

Ω =
ρ

ρcr
, (17.14)

then (F1’) becomes

Ω − 1 =
k

a2H2
(17.15)

Thus the sign of k is determined by whether the actual energy density ρ in the universe

is greater than, equal to, or less than the critical density,

ρ < ρcr ⇔ k = −1 ⇔ open

ρ = ρcr ⇔ k = 0 ⇔ flat

ρ > ρcr ⇔ k = +1 ⇔ closed

This can be generalised to several species of (not mutually interacting) matter, char-

acterised by equation of state parameters wb, subject to the condition wb > 0 or

wb > −1/3, with density parameters

Ωb =
ρb
ρcr

. (17.16)

The total matter contribution ΩM is then

ΩM =
∑

b

Ωb . (17.17)

Along the same lines we can also include the cosmological constant Λ. Indeed, inspection

of the Friedmann equations reveals that the presence of a cosmological constant is

equivalent to adding matter (ρΛ, pΛ) with

Λ ⇔ ρΛ = −pΛ =
Λ

8πG
wΛ = −1 . (17.18)

Note that this identification is consistent with the conservation law (F3), since Λ is

constant.

Then the Friedmann equation (F1’) with a cosmological constant can be written as

(F1′) ⇔ ΩM + ΩΛ = 1 +
k

a2H2
, (17.19)

where

ΩΛ =
ρΛ

ρcr
=

Λ

3H2
. (17.20)

The 2nd order equation (F2’) can also be written in terms of the density parameters,

q = 1
2

∑

b

(1 + 3wb)Ωb − ΩΛ . (17.21)
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Finally, one can also formally attribute an energy density ρk and pressure pk to the

curvature contribution ∼ k in the Friedmann equations. (F1), which does not depend

on p, determines ρk, and then (F2), which does not depend on k, shows that wk = −1/3

(so that ρk + 3pk = 0). Thus the curvature contribution can be described as

k ⇔ ρk = −3pk =
−3k

8πGa2
wk = −1/3 , (17.22)

with associated density parameter Ωk. (F3) is identically satisfied in this case (or, if

you prefer, requires that k is constant).

The Friedmann equation (F1) can now succinctly (if somewhat obscurely) be written

as the condition that the sum of all density parameters be equal to 1,

(F1′) ⇔ ΩM + ΩΛ + Ωk = 1 . (17.23)

Clearly, it is thus of upmost importance to determine the various contributions ρa and

ρΛ to the matter density ρ of the universe (and to determine ρcr e.g. by measurements

of Hubble’s constant).

17.5 The Universe Today

For a long time it was believed that the only non-negligible contribution to ρ(t) today,

let us call this ρ0 = ρ(t0), is pressureless matter, p0 = 0. If that were the case, then

(F2’) in the version (17.21) would imply

q0 =
ρ0

2ρcr,0
= 1

2ΩM , (17.24)

and thus k would be directly related to the value q0 of the deceleration parameter today,

as in

q0 > 1/2 ⇒ k = +1 , ρ0 > ρcr

q0 < 1/2 ⇒ k = −1 , ρ0 < ρcr . (17.25)

Moreover, observations indicated a value of ρ0 much smaller than ρcr, thus suggesting

a decelerating open k = −1 universe. While perhaps not the most hospitable place in

the long run, at least this scenario had the virtue of simplicity.

However, exciting recent developments and observations in astronomy and astrophysics

have provided strong evidence for a very different picture of the universe today. I will

just the summarise the results here:

1. Current estimates for the matter contribution ΩM =
∑

bΩb are

ΩM ∼ 0.3 . (17.26)

238



2. Ordinary (visible, baryonic) matter only accounts for a small fraction of this,

namely

ΩM,visible ∼ 0.04 . (17.27)

Most of the matter density of the universe must therefore be due to some form of

(as yet ill-understood) dark matter.

3. Independent observations from so-called Supernovae (as standard candles) and

the study of the fine structure of the Cosmic Microwave Background both suggest

that the universe is spatially flat, k = 0, and that the missing energy-density is

due to (something that behaves very much like) a positive cosmological constant,

ΩΛ ∼ 0.7 ΩM + ΩΛ = 1 . (17.28)

4. In particular, the cosmological constant is positive, leading to the conclusion that

the universe is currently accelerating in its expansion rather than slowing down.

This currently favoured scenario raises all kinds of questions and puzzles, not just be-

cause of the dark matter component but, in particular, because of the presence of a

cosmological constant whose energy density today is comparable to that of matter. An

excellent recent introduction to cosmology which explains how the above results were

obtained (and much more) is provided by the TASI lecture notes of M. Trodden and S.

Carroll.9

9M. Trodden, S. Carroll, TASI Lectures: Introduction to Cosmology, arXiv:astro-ph/0401547.
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18 Cosmology IV: Exact Solutions

18.1 Preliminaries

We have seen that a lot can be learnt about the Friedmann-Robertson-Walker models

without ever having to solve a differential equation. On the other hand, more precise

information can be obtained by specifying an equation of state for the matter content

and solving the Friedmann equations.

In general, several species of matter, characterised by different equations of state or

differnet equation of state parameters wb will coexist. If we assume, as in the discussion

of section 17.4, that these do not interact, then one can just add up their contributions

in the Friedmann equations.

In order to make the dependence of the Friedmann equation (F1)

ȧ2 =
8πG

3
ρa2 − k +

Λ

3
a2 (18.1)

on the equation of state parameters wb more manifest, it is useful to use the conservation

law (16.40,17.6) to write

8πG

3
ρb(t)a(t)

2 = Cba(t)
−(1+3wb) (18.2)

for some constant Cb. Then the Friedmann equation takes the more explicit (in the

sense that all the dependence on the cosmic scale factor a(t) is explicit) form

ȧ2 =
∑

b

Cba
−(1+3wb) − k +

Λ

3
a2 . (18.3)

In addition to the vacuum energy (and pressure) provided by Λ, there are typically

two other kinds of matter which are relevant in our approximation, namely matter in

the form of dust and radiation. Denoting the corresponding constants by Cm and Cr

respectively, the Friedmann equation that we will be dealing with takes the form

(F1′′) ȧ2 =
Cm
a

+
Cr
a2

− k +
Λ

3
a2 , (18.4)

illustrating the qualitatively different conntributions to the time-evolution. One can

then characterise the different eras in the evolution of the universe by which of the

above terms dominates, i.e. gives the leading contribution to the equation of motion for

a. This already gives some insight into the physics of the situation.

We will call a universe

1. matter dominated if Cm/a dominates

2. radiation dominated if Cr/a
2 dominates
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3. curvature dominated if k dominates

4. vacuum dominated if Λa2 dominates

As mentioned before, for a long time it was believed that our present universe is purely

matter dominated while recent observations appear to indicate that contributions from

both matter and the cosmological constant are non-negligible.

Her are some immediate consequences of the Friedmann equation (F1”):

1. No matter how small Cr is, provided that it is non-zero, for sufficiently small

values of a that term will dominate and one is in the radiation dominated era. In

that case, one finds the characteristic behaviour

ȧ2 =
Cr
a2

⇒ a(t) = (4Cr)
1/4t1/2 . (18.5)

It is more informative to trade the constant Cr for the condition a(t0) = a0, which

leads to

a(t) = a0(t/t0)
1/2 . (18.6)

2. On the other hand, if Cm dominates, one has the characteristic behaviour

ȧ2 =
Cm
a

⇒ a(t) = (9Cm/4)
1/3t2/3 (18.7)

or

a(t) = a0(t/t0)
2/3 (18.8)

3. For general equation of state parameter w 6= −1, one similarly has

a(t) = a0(t/t0)
h ; h =

2

3(1 + w)
. (18.9)

This describes a decelerating universe (h(h − 1) < 0 ⇒ 0 < h < 1) for w > −1/3

and an accelerating universe (h > 1) for −1 < w < −1/3.

4. For sufficiently large a, Λ, if not identically zero, will always dominate, no matter

how small the cosmological constant may be, as all the other energy-content of

the universe gets more and more diluted.

5. Only for Λ = 0 does k dominate for large a and one obtains, as we saw before, a

constant expansion velocity (for k = 0,−1).

6. Finally, for Λ = 0 the Friedmann equation can be integrated in terms of elementary

functions whereas for Λ 6= 0 one typically encounters elliptic integrals (unless

ρ = p = 0).
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18.2 The Einstein Universe

This particular solution is only of historical interest. Einstein was looking for a static

cosmological solution and for this he was forced to introduce the cosmological constant.

Static means that ȧ = 0. Thus (F3) tells us that ρ̇ = 0. (F2) tells us that 4πG(ρ+3p) =

Λ, where ρ = ρm + ρr. Therefore p(t) also has to be time-independent, ṗ = 0, and

moreover Λ has to be positive. We see that with Λ = 0 we would already not be able to

satisfy this equation for physical matter content ρ + 3p > 0. From (F1”) one deduces

that

k =
Cm
a

+
Cr
a2

+
Λ

3
a2 . (18.10)

As all the terms on the right hand side are positive, this means that necessarily k = +1.

Going back to (F1), setting ȧ = 0, k = +1, and substituting Λ by 4πG(ρ + 3p), one

obtains a simple algebraic equation for a(t) = a0, namely

a2 = (8πGρ/3 + 4πG(ρ + 3p)/3)−1

= (4πG(ρ + p))−1 . (18.11)

This is thus a static universe, with topology R×S3 in which the gravitational attraction

is precisely balanced by the cosmological constant. Note that even though a positive

cosmological constant has a positive energy density, it has a negative pressure, and the

net effect of a positive cosmological constant is that of gravitational repulsion rather

than attraction.

18.3 The Matter Dominated Era

This is somewhat more realistic. In this case we have to solve

ȧ2 =
Cm
a

− k . (18.12)

For k = 0, this is the equation we already discussed above, leading to the solution (18.8),

a(t) = a0(t/t0)
2/3 (18.13)

This solution is also known as the Einstein - de Sitter universe.

For k = +1, the equation is

ȧ2 =
Cm
a

− 1 . (18.14)

We recall that in this case we will have a recollapsing universe with amax = Cm, which

is attained for ȧ = 0. This can be solved in closed form for t as a function of a, and the

solution to
dt

da
= (

a

amax − a
)−1/2 (18.15)
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is

t(a) =
amax

2
arccos(1 − 2a/amax) −

√
aamax − a2 , (18.16)

as can easily be verified.

The universe starts at t = 0 with a(0) = 0, reaches its maximum a = amax at

tmax = amax arccos(−1)/2 = amaxπ/2 , (18.17)

and ends in a Big Crunch at t = 2tmax. The curve a(t) is a cycloid, as is most readily

seen by writing the solution in parametrised form. For this it is convenient to introduce

the time-coordinate u via
du

dt
=

1

a(t)
. (18.18)

As an aside, note that with this time-coordinate the Robertson-Walker metric (for any

k) takes the simple form

ds2 = a2(u)(−du2 + ds̃2) , (18.19)

where again a tilde refers to the maximally symmetric spatial metric. In polar coordi-

nates, this becomes

ds2 = a2(u)(−du2 + dψ2 + f2(ψ)dΩ2) . (18.20)

Thus radial null lines are determined by du = ±dψ, as in flat space, and this coordi-

nate system is very convenient for discussing the causal structure of the Friedmann-

Robertson-Walker universes.

Anyway, in terms of the parameter u, the solution to the Friedmann equation for k = +1

can be written as

a(u) =
amax

2
(1 − cos u)

t(u) =
amax

2
(u− sinu) , (18.21)

which makes it transparent that the curve is indeed a cycloid, roughly as indicated in

Figure 22. The maximal radius is reached at

tmax = t(a = amax) = t(u = π) = amaxπ/2 (18.22)

(with amax = Cm), as before, and the total lifetime of the universe is 2tmax.

We also see that for small times (for which matter dominates over curvature) the solution

reduces to t ∼ u3, a ∼ u2 ⇒ a ∼ t2/3 which is the exact solution for k = 0.

Analogously, for k = −1, the Friedmann equation can be solved in parametrised form,

with the trignometric functions replaced by hyperbolic functions,

a(u) =
Cm
2

(cosh u− 1)

t(u) =
Cm
2

(sinhu− u) . (18.23)
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18.4 The Radiation Dominated Era

In this case we need to solve

a2ȧ2 = Cr − ka2 . (18.24)

Because a appears only quadratically, it is convenient to make the change of variables

b = a2. Then one obtains
ḃ2

4
+ kb = Cr . (18.25)

For k = 0 we had already seen the solution in (18.6),

a(t) = a0(t/t0)
1/2 . (18.26)

For k = ±1, one necessarily has b(t) = b0 + b1t+ b2t
2. Fixing b(0) = 0, one easily finds

the solution

a(t) = [2C1/2
r t− kt2]1/2 . (18.27)

As expected this reduces to a(t) ∼ t1/2 for small times. For k = +1 one has

a(0) = a(2C1/2
r ) = 0 . (18.28)

Thus already electro-magnetic radiation is sufficient to shrink the universe again and

make it recollapse. For k = −1, on the other hand, the universe expands forever. All

this is of course in agreement with the results of the qualitative discussion given earlier.

18.5 The Vacuum Dominated Era: (Anti-) de Sitter Space

Even though not very realistic, this is of some interest for two reasons. On the one

hand, as we know, Λ is the dominant driving force for a very large (and may therefore,

if current observations are to be believed, dominate the late-time behaviour of our

universe). On the other hand, recent cosmological models trying to solve the so-called

horizon problem and flatness problem of the standard FRW model of cosmology use a

mechanicsm called inflation and postulate a vacuum dominated era during some time

in the early universe.

Thus the equation to solve is

ȧ2 = −k +
Λ

3
a2 . (18.29)

We see immediately that Λ has to be positive for k = +1 or k = 0, whereas for k = −1

both positive and negative Λ are possible.

This is one instance where the solution to the second order equation (F2),

ä =
Λ

3
a , (18.30)
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is more immediate, namely trigonometric functions for Λ < 0 (only possible for k = −1)

and hyperbolic functions for Λ > 0. The first order equation then fixes the constants of

integration according to the value of k.

For k = 0, the solution is obviously

a±(t) =
√

3/Λe±
√

Λ/3t , (18.31)

and for k = +1, thus Λ > 0, one has

a(t) =
√

3/Λ cosh
√

Λ/3t . (18.32)

This is also known as the de Sitter universe. It is a maximally symmetric (in space-time)

solution of the Einstein equations with a cosmological constant and thus has a metric

of constant curvature (cf. the discussion in section 14). But we know that such a metric

is unique. Hence the three solutions with Λ > 0, for k = 0,±1 must all represent the

same space-time metric, only in different coordinate systems (and it is a good exercise

to check this explicitly). This is interesting because it shows that de Sitter space is so

symmetric that it has spacelike slicings by three-spheres, by three-hyperboloids and by

three-planes.

The solution for k = −1 involves sin
√

|Λ|/3t for Λ < 0 and sinh
√

Λ/3t for Λ > 0, as is

easily checked. The former is known as the anti de Sitter universe.
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19 Linearised Gravity and Gravitational Waves

19.1 Preliminary Remarks

In previous sections we have dealt with situations in General Relativity in which the

gravitational field is strong and the full non-linearity of the Einstein equations comes into

play (Black Holes, Cosmology). In most ordinary situations, however, the gravitational

field is weak, very weak, and then it is legitimate to work with a linearisation of the

Einstein equations. Our first aim will be to derive these linearised equations. As we will

see, these turn out to be wave equations and we are thus naturally led to the subject of

gravitational waves. These are an important prediction of General Relativity (there are

no gravitational waves in Newton’s theory). It is therefore important to understand how

or under which circumstances they are created and how they can be detected. These,

unfortunately, are rather complicated questions in general and I will not enter into this.

The things I will cover in the following are much more elementary, both technically and

conceptually, than anything else we have done recently.

19.2 The Linearised Einstein Equations

When we first derived the Einstein equations we checked that we were doing the right

thing by deriving the Newtonian theory in the limit where

1. the gravitational field is weak

2. the gravitational field is static

3. test particles move slowly

We will now analyse a less restrictive situation in which we only impose the first con-

dition. This is sufficient to deal with issues like gravitational waves and relativistic

test-particles.

We express the weakness of the gravitational field by the condition that the metric be

‘close’ to that of Minkowski space, i.e. that

gµν = g(1)
µν ≡ ηµν + hµν (19.1)

with |hµν | ≪ 1. This means that we will drop terms which are quadratic or of higher

power in hµν . Here and in the following the superscript (1) indicates that we keep only

up to linear (first order) terms in hµν . In particular, the inverse metric is

g(1)µν = ηµν − hµν (19.2)

where indices are raised with ηµν . As one has thus essentially chosen a background

metric, the Minkowski metric, one can think of the linearised version of the Einstein

246



equations (which are field equations for hµν) as a Lorentz-invariant theory of a symmetric

tensor field propagating in Minkowski space-time. I won’t dwell on this but it is good

to keep this in mind. It gives rise to the field theorist’s picture of gravity as the theory

of an interacting spin-2 field (which I do not subscribe to unconditionally because it is

an inherently perturbative and background dependent picture).

It is straightforward to work out the Christoffel symbols and curvature tensors in this

approximation. The terms quadratic in the Christoffel symbols do not contribute to the

Riemann curvature tensor and one finds

Γ
(1)µ
νλ = ηµρ 1

2(∂λhρν + ∂νhρλ − ∂ρhνλ)

R(1)
µνρσ = 1

2(∂ρ∂νhµσ + ∂µ∂σhρν − ∂ρ∂µhνσ − ∂ν∂σhρµ) . (19.3)

Hence the linearised Ricci tensor is

R(1)
µν = 1

2(∂σ∂νh
σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh− 2hµν) , (19.4)

where h = hµµ is the trace of hµν and 2 = ∂µ∂µ. Thus the Ricci scalar is

R(1) = ∂µ∂νh
µν − 2h , (19.5)

and the Einstein tensor is

G(1)
µν = 1

2(∂σ∂νh
σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh− 2hµν − ηµν∂ρ∂σh

ρσ + ηµν2h) , (19.6)

Therefore the linearised Einstein equations are

G(1)
µν = 8πGT (0)

µν . (19.7)

Note that only the zero’th order term in the h-expansion appears on the right hand side

of this equation. This is due to the fact that Tµν must itself already be small in order for

the linearised approximation to be valid, i.e. T
(0)
µν should be of order hµν . Therefore, any

terms in Tµν depending on hµν would already be of order (hµν)
2 and can be dropped.

Therefore the conservation law for the energy-momentum tensor is just

∂µT
(0)µν = 0 , (19.8)

and this is indeed compatible with the linearised Bianchi identity

∂µG
(1)µν = 0 , (19.9)

which can easily be verified. In fact, one has the stronger statement that

G(1)µν = ∂ρQ
ρµν (19.10)

with Qρµν = −Qµρν , and this obviously implies the Bianchi identity.
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19.3 Gauge Freedom and Coordinate Choices

To simplify life, it is now useful to employ the freedom we have in the choice of coordi-

nates. What remains of general coordinate invariance in the linearised approximation

are, naturally, linearised general coordinate transformations. Indeed, hµν and

h′µν = hµν + LV ηµν (19.11)

represent the same physical perturbation because ηµν + LV ηµν is just an infinitesimal

coordinate transform of the Minkowski metric ηµν . Therefore linearised gravity has the

gauge freedom

hµν → hµν + ∂µVν + ∂νVµ . (19.12)

For example, the linearised Riemann tensor R
(1)
µνρσ is, rather obviously, invariant under

this transformation (and hence so are the Einstein tensor etc.).

In general, a very useful gauge condition is

gµνΓρµν = 0 . (19.13)

It is called the harmonic gauge condition (or Fock, or de Donder gauge condition), and

the name harmonic derives from the fact that in this gauge the coordinate fuctions xµ

are harmonic:

2xµ ≡ gνρ∇ρ∂νx
µ = −gνρΓµνρ , (19.14)

and thus

2xµ = 0 ⇔ gνρΓµνρ = 0 . (19.15)

It is the analogue of the Lorentz gauge ∂µA
µ = 0 in Maxwell theory. Moreover, in

flat space Cartesian coordinates are obviously harmonic, and in general harmonic co-

ordinates are (like geodesic coordinates) a nice and useful curved space counterpart of

Cartesian coordinates.

In the linearised theory, this gauge condition becomes

∂µh
µ
λ − 1

2∂λh = 0 . (19.16)

The gauge parameter Vµ which will achieve this is the solution to the equation

2Vλ = −(∂µh
µ
λ − 1

2∂λh) . (19.17)

Indeed, with this choice one has

∂µ(h
µ
λ + ∂µVλ + ∂λV

µ) − 1
2(∂λh+ 2∂µVµ) = 0 . (19.18)

Note for later that, as in Maxwell theory, this gauge choice does not necessarily fix

the gauge completely. Any transformation xµ → xµ + ξµ with 2ξµ = 0 will leave the

harmonic gauge condition invariant.
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19.4 The Wave Equation

Now let us use this gauge condition in the linearised Einstein equations. In this gauge

they simplify somewhat to

2hµν − 1
2ηµν2h = −16πGT (0)

µν . (19.19)

In particular, the vacuum equations are just

T (0)
µν = 0 ⇒ 2hµν = 0 , (19.20)

which is the standarad relativistic wave equation. Together, the equations

2hµν = 0

∂µh
µ
λ − 1

2∂λh = 0 (19.21)

determine the evolution of a disturbance in a gravitational field in vacuum in the har-

monic gauge.

It is often convenient to define the trace reversed perturbation

h̄µν = hµν − 1
2ηµνh , (19.22)

with

h̄µµ = −hµµ . (19.23)

Note, as an aside, that with this notation and terminology the Einstein tensor is the

trace reversed Ricci tensor,

R̄µν = Gµν . (19.24)

In terms of h̄µν , the Einstein equations and gauge conditions are just

2h̄µν = −16πGT (0)
µν

∂µh̄
µ
ν = 0 . (19.25)

In this equation, the h̄µν are now decoupled. One solution is, of course, the retarded

potential

h̄µν(~x, t) = 4G

∫
d3x′

T
(0)
µν (~x′, t− |~x− ~x′|)

|~x− ~x′|
. (19.26)

Note that, as a consequence of ∂µT
(0)µν = 0, this solution is automatically in the

harmonic gauge.
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19.5 The Polarisation Tensor

The linearised vacuum Einstein equation in the harmonic gauge,

2h̄µν = 0 , (19.27)

is clearly solved by

h̄µν = Cµνe
ikαx

α
, (19.28)

where Cµν is a constant, symmetric polarisation tensor and kα is a constant wave vector,

provided that kα is null, kαkα = 0. (In order to obtain real metrics one should of course

use real solutions.)

Thus plane waves are solutions to the linearised equations of motion and the Einstein

equations predict the existence of gravitational waves travelling along null geodesics (at

the speed of light). The timelike component of the wave vector is often referred to as

the frequency ω of the wave, and we can write kµ = (ω, ki). Plane waves are of course

not the most general solutions to the wave equations but any solution can be written

as a superposition of plane wave solutions (wave packets).

So far, we have ten parameters Cµν and four parameters kµ to specify the wave, but

many of these are spurious, i.e. can be eliminated by using the freedom to perform

linearised coordinate transformations and Lorentz rotations.

First of all, the harmonic gauge condition implies that

∂µh̄
µ
ν = 0 ⇒ kµCµν = 0 . (19.29)

Now we can make use of the residual gauge freedom xµ → xµ + ξµ with 2ξµ = 0 to

impose further conditions on the polarisation tensor. Since this is a wave equation for

ξµ, once we have specified a solution for ξµ we will have fixed the gauge completely.

Taking this solution to be of the form

ξµ = Bµe
ikαx

α
, (19.30)

one can choose the Bµ in such a way that the new polarisation tensor satisfies kµCµν = 0

(as before) as well as

Cµ0 = Cµµ = 0 . (19.31)

All in all, we appear to have nine conditions on the polarisation tensor Cµν but as both

(19.29) and the first of (19.31) imply kµCµ0 = 0, only eight of these are independent.

Therefore, there are two independent polarisations for a gravitational wave.

For example, we can choose the wave to travel in the x3-direction. Then

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) , (19.32)
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and kµCµν = 0 and C0ν = 0 imply C3ν = 0, so that the only independent components

are Cab with a, b = 1, 2. As Cab is symmetric and traceless, this wave is completely

characterised by C11 = −C22, C12 = C21 and the frequency ω.

Now we should not forget that, when talking about the polarisation tensor of a gravita-

tional wave, we are actualy talking about the space-time metric itself. Namely, since for

a traceless perturbation we have h̄αβ = hαβ , we have deduced that the metric describing

a gravitational wave travelling in the x3-direction can always be put into the form

ds2 = −dt2 + (δab + hab)dx
adxb + (dx3)2 , (19.33)

with hab = hab(t∓ x3).

19.6 Physical Effects of Gravitational Waves

To determine the physical effect of a gravitational wave racing by, we consider its influ-

ence on the relative motion of nearby particles. In other words, we look at the geodesic

deviation equation. Consider a family of nearby particles described by the velocity field

uµ(x) and separation (deviation) vector Sµ(x),

D2

Dτ2
Sµ = Rµνρσu

νuρSσ . (19.34)

Now let us take the test particles to move slowly,

uµ = (1, 0, 0, 0) + O(h) . (19.35)

Then, because the Riemann tensor is already of order h, the right hand side of the

geodesic deviation equation reduces to

R
(1)
µ00σ = 1

2∂0∂0hµσ (19.36)

(because h0µ = 0). On the other hand, to lowest order the left hand side is just the

ordinary time derivative. Thus the geodesic deviation equation becomes

∂2

∂t2
Sµ = 1

2S
σ ∂

2

∂t2
hµσ . (19.37)

In particular, we see immediately that the gravitational wave is transversally polarised,

i.e. the component S3 of Sµ in the longitudinal direction of the wave is unaffected and

the particles are only disturbed in directions perpendicular to the wave. This gives rise

to characteristic oscillating movements of the test particles in the 1-2 plane.

For example, with C12 = 0 one has

∂2

∂t2
S1 = 1

2S
1 ∂

2

∂t2
(C11e

ikαx
α
)

∂2

∂t2
S2 = −1

2S
2 ∂

2

∂t2
(C11e

ikαx
α
) . (19.38)
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x 1

x 2

Figure 23: Effect of a gravitational wave with polarisation C11 moving in the x3-

direction, on a ring of test particles in the x1 − x2-plane.

Thus, to lowest order one has

S1 = (1 + 1
2C11e

ikαx
α
)S1(0)

S2 = (1 − 1
2C11e

ikαx
α
)S2(0)

(19.39)

Recalling the interpretation of Sµ as a separation vector, this means that particles

originally seperated in the x1-direction will oscillate back and forth in the x1-direction

and likewise for x2. A nice (and classical) way to visualise this (see Figure 23) is to

start off with a ring of particles in the 1 − 2 plane. As the wave passes by the particles

will start bouncing in such a way that the ring bounces in the shape of a cross +. For

this reason, C11 is also frequently written as C+.

If, on the other hand, C11 = 0 but C12 6= 0, then S1 will be displaced in the direction

of S2 and vice versa,

S1 = S1(0) + 1
2C12e

ikαx
α
S2(0)

S2 = S2(0) + 1
2C12e

ikαx
α
S1(0) , (19.40)

and the ring of particles will bounce in the shape of a × (C12 = C×) - see Figure 24.

Of course, one can also construct circularly polarised waves by using

CR,L =
1√
2
(C11 ± iC12) . (19.41)

These solutions display the characteristic behaviour of quadrupole radiation, and this

is something that we might have anticipated on general grounds. First of all, we know

from Birkhoff’s theorem that there can be no monopole (s-wave) radiation. Moreover,
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x 1

x 2

Figure 24: Effect of a gravitational wave with polarisation C12 moving in the x3-

direction, on a ring of test particles in the x1 − x2-plane.

dipole radiation is due to oscillations of the center of charge. While this is certainly

possible for electric charges, an oscillation of the center of mass would violate momentum

conservation and is therefore ruled out. Thus the lowest possible mode of gravitational

radiation is quadrupole radiation, just as we have found.

19.7 Detection of Gravitational Waves

In principle, now that we have solutions to the vacuum equations, we should include

sources and study the production of gravitational waves, characterise the type of radi-

ation that is emitted, estimate the energy etc. I will not do this but just make some

general comments on the detection of gravitational waves.

In principle, this ought to be straightforward. For example, one might like to simply try

to track the separation of two freely suspended masses. Alternatively, the particles need

not be free but could be connected by a solid piece of material. Then gravitational tidal

forces will stress the material. If the resonant frequency of this ‘antenna’ equals the

frequency of the gravitational wave, this should lead to a detectable oscillation. This is

the principle of the so-called Weber detectors (1966-. . . ), but these have not yet, as far

as I know, produced completely conclusive results. In a sense this is not surprising as

gravitational waves are extremely weak, so weak in fact that the quantum theory of the

detectors (huge garbage can size aluminium cylinders, for example) needs to be taken

into account.

However, there is indirect (and very compelling) evidence for gravitational waves. Ac-

cording to the theory (we have not developed), a binary system of stars rotating

around its common center of mass should radiate gravitational waves (much like electro-

magnetic synchroton radiation). For two stars of equal mass M at distance 2r from each
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other, the prediction of General Relativity is that the power radiated by the binary sys-

tem is

P =
2

5

G4M5

r5
. (19.42)

This energy loss has actually been observed. In 1974, Hulse and Taylor discovered a

binary system, affectionately known as PSR1913+16, in which both stars are very small

and one of them is a pulsar, a rapidly spinning neutron star. The period of the orbit is

only eight hours, and the fact that one of the stars is a pulsar provides a highly accurate

clock with respect to which a change in the period as the binary loses energy can be

measured. The observed value is in good agreement with the theoretical prediction for

loss of energy by gravitational radiation and Hulse and Taylor were rewarded for these

discoveries with the 1993 Nobel Prize.

Other situations in which gravitational waves might be either detected directly or in-

ferred indirectly are extreme situations like gravitational collapse (supernovae) or matter

orbiting black holes.
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20 * Exact Wave-like Solutions of the Einstein Equations

In the previous section we discussed wave-like solutions to the linearised Einstein equa-

tions. In this section, we will briefly discuss a class of solutions to the full non-linear

Einstein equations which are also wave-like and thus generalise the solutions of the pre-

vious section (to which they reduce in the weak-field limit). These solutions are called

plane-fronted waves with parallel rays or pp-waves for short. A special subset of these

solutions are the so-called exact gravitational plane wave metrics or simply plane waves.

Such wave-metrics have been studied in the context of four-dimensional general relativity

for a long time even though they are not (and were never meant to be) phenomeno-

logically realistic models of gravitational plane waves. The reason for this is that in

the far-field gravitational waves are so weak that the linearised Einstein equations and

their solutions are adequate to describe the physics, whereas the near-field strong grav-

itational effects responsible for the production of gravitational waves, for which the

linearised equations are indeed insufficient, correspond to much more complicated solu-

tions of the Einstein equations (describing e.g. two very massive stars orbiting around

their common center of mass).

However, pp-waves have been useful and of interest as a theoretical play-ground since

they are in some sense the simplest essentially Lorentzian metrics with no non-trivial

Riemannian counterparts. As such they also provide a wealth of counterexamples to

conjectures that one might like to make about Lorentzian geometry by naive extrapo-

lation from the Riemannian case. They have also enjoyed some popularity in the string

theory literature as potentially exact and exactly solvable string theory “backgrounds”.

However, they seem to have made it into very few textbook accounts of general relativ-

ity, and the purpose of this section is to at least partially fill this gap by providing a

brief introduction to this topic.

20.1 Plane Waves in Rosen Coordinates: Heuristics

We have seen in the previous section that a metric describing the propagation of a plane

wave in the x3-direction (19.33) can be written as

ds2 = −dt2 + (δab + hab)dx
adxb + (dx3)2 , (20.1)

with hab = hab(t− x3).

In terms of lightcone coordinates U = z − t, V = (z + t)/2 this can be written as

ds2 = 2dUdV + (δij + hij(U))dyidyj . (20.2)

We will now simply define a plane wave metric in general relativity to be a metric of

the above form, dropping the assumption that hij be “small”,

ds̄2 = 2dUdV + ḡij(U)dyidyj . (20.3)
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We will say that this is a plane wave metric in Rosen coordinates. This is not the

coordinate system in which plane waves are usually discussed, among other reasons

because typically in Rosen coordinates the metric exhibits spurious coordinate singu-

larities. This led to the mistaken belief in the past that there are no non-singular plane

wave solutions of the non-linear Einstein equations. We will establish the relation to

the more common and much more useful Brinkmann coordinates below.

Plane wave metrics are characterised by a single matrix-valued function of U , but two

metrics with quite different ḡij may well be isometric. For example,

ds̄2 = 2dUdV + U2d~y2 (20.4)

is isometric to the flat Minkowski metric whose natural presentation in Rosen coordi-

nates is simply the Minkowski metric in lightcone coordinates,

ds̄2 = 2dUdV + d~y2 . (20.5)

This is not too difficult to see, and we will establish this as a consequence of a more

general result in section 20.8 (but if you want to try this now, try scaling ~y by U and

do something to V . . . ).

That (20.4) is indeed flat should in any case not be too surprising. It is the “null”

counterpart of the “spacelike” fact that ds2 = dr2 + r2dΩ2, with dΩ2 the unit line

element on the sphere, is just the flat Euclidean metric in polar coordinates, and the

“timelike” statement that

ds2 = −dt2 + t2dΩ̃2 , (20.6)

with dΩ̃2 the unit line element on the hyperboloid, is just (a wedge of) the flat Minkowski

metric. In cosmology this is known as the Milne Universe. It is easy to check that this

is indeed a (rather trivial) solution of the Friedmann equations with k = −1, a(t) = t

and ρ = P = 0.

It is somewhat less obvious, but still true, that for example the two metrics

ds̄2 = 2dUdV + sinh2 Ud~y2

ds̄2 = 2dUdV + e2Ud~y2 (20.7)

are also isometric.

20.2 From pp-waves to plane waves in Brinkmann coordinates

In the remainder of this section we will study gravitational plane waves in a more

systematic way. One of the characteristic features of the above plane wave metrics is

the existence of a nowhere vanishing covariantly constant null vector field, namely ∂V .

We thus begin by deriving the general metric (line element) for a space-time admitting
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such a covariantly constant null vector field. We will from now on consider general

(d+ 2)-dimensional space-times, where d is the number of transverse dimensions.

Thus, let Z be a parallel (i.e. covariantly constant) null vector of the (d+2)-dimensional

Lorentzian metric gµν , ∇µZ
ν = 0. This condition is equivalent to the pair of conditions

∇µZν + ∇νZµ = 0 (20.8)

∇µZν −∇νZµ = 0 . (20.9)

The first of these says that Z is a Killing vector field, and the second that Z is also

a gradient vector field. If Z is nowhere zero, without loss of generality we can assume

that

Z = ∂v (20.10)

for some coordinate v since this simply means that we are using a parameter along

the integral curves of Z as our coordinate v. In terms of components this means that

Zµ = δµv , or

Zµ = gµv . (20.11)

The fact that Z is null means that

Zv = gvv = 0 . (20.12)

The Killing equation now implies that all the components of the metric are v-independent,

∂vgµν = 0 . (20.13)

The second condition (20.9) is identical to

∇µZν −∇νZµ = 0 ⇔ ∂µZν − ∂νZµ = 0 , (20.14)

which implies that locally we can find a function u = u(xµ) such that

Zµ = gvµ = ∂µu . (20.15)

There are no further constraints, and thus the general form of a metric admitting a

parallel null vector is, changing from the xµ-coordinates to {u, v, xa}, a = 1, . . . , d,

ds2 = gµνdx
µdxν

= 2dudv + guu(u, x
c)du2 + 2gau(u, x

c)dxadu+ gab(u, x
c)dxadxb

≡ 2dudv +K(u, xc)du2 + 2Aa(u, x
c)dxadu+ gab(u, x

c)dxadxb . (20.16)

Note that if we had considered a metric with a covariantly constant timelike or spacelike

vector, then we would have obtained the above metric with an additional term of the

form ∓dv2. In that case, the cross-term 2dudv could have been eliminated by shifting

v → v′ = v ∓ u, and the metric would have factorised into ∓dv′2 plus a v′-independent
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metric. Such a factorisation does in general not occur for a covariantly constant null

vector, which makes metrics with such a vector potentially more interesting than their

timelike or spacelike counterparts.

There are still residual coordinate transformations which leave the above form of the

metric invariant. For example, both K and Aa can be eliminated in favour of gab. We

will not pursue this here, as we are primarily interested in a special class of metrics

which are characterised by the fact that gab = δab,

ds2 = 2dudv +K(u, xb)du2 + 2Aa(u, x
b)dxadu+ d~x2 . (20.17)

Such metrics are called plane-fronted waves with parallel rays, or pp-waves for short.

“plane-fronted” refers to the fact that the wave fronts u = const. are planar (flat),

and “parallel rays” refers to the existence of a parallel null vector. Once again, there

are residual coordinate transformations which leave this form of the metric invariant.

Among them are shifts of v, v → v + Λ(u, xa), under which the coefficients K and Aa

transform as

K → K + 1
2∂uΛ

Aa → Aa + ∂aΛ . (20.18)

Note in particular the “gauge transformation” of the (Kaluza-Klein) gauge field Aa,

here associated with the null isometry generated by Z = ∂v.

Plane waves are a very special kind of pp-waves. By definition, a plane wave metric is

a pp-wave with Aa = 0 and K(u, xa) quadratic in the xa (zero’th and first order terms

in xa can be eliminated by a coordinate transformation),

ds̄2 = 2dudv +Aab(u)x
axbdu2 + d~x2 . (20.19)

We will say that this is the metric of a plane wave in Brinkmann coordinates. The

relation between the expressions for a plane wave in Brinkmann coordinates and Rosen

coordinates will be explained in section 20.8. From now on barred quantities will refer

to plane wave metrics.

In Brinkmann coordinates a plane wave metric is characterised by a single symmet-

ric matrix-valued function Aab(u). Generically there is very little redundancy in the

description of plane waves in Brinkmann coordinates, i.e. there are very few residual

coordinate transformations that leave the form of the metric invariant, and the metric

is specified almost uniquely by Aab(u). In particular, as we will see below, a plane wave

metric is flat if and only if Aab(u) = 0 identically. Contrast this with the non-uniqueness

of the flat metric in Rosen coordinates. This uniqueness of the Brinkmann coordinates

is one of the features that makes them convenient to work with in concrete applications.
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20.3 Geodesics, Light-Cone Gauge and Harmonic Oscillators

We now take a look at geodesics of a plane wave metric in Brinkmann coordinates,

ds̄2 = 2dudv +Aab(u)x
axbdu2 + d~x2 , (20.20)

i.e. the solutions xµ(τ) to the geodesic equations

ẍµ(τ) + Γ̄µνλ(x(τ))ẋ
ν(τ)ẋλ(τ) = 0 , (20.21)

where an overdot denotes a derivative with respect to the affine parameter τ .

Rather than determining the geodesic equations by first calculating all the non-zero

Christoffel symbols, we make use of the fact that the geodesic equations can be obtained

more efficiently, and in a way that allows us to directly make use of the symmetries of

the problem, as the Euler-Lagrange equations of the Lagrangian

L = 1
2 ḡµν ẋ

µẋν

= u̇v̇ + 1
2Aab(u)x

axbu̇2 + 1
2 ~̇x

2 , (20.22)

supplemented by the constraint

2L = ǫ , (20.23)

where ǫ = 0 (ǫ = −1) for massless (massive) particles.

Since nothing depends on v, the lightcone momentum

pv =
∂L
∂v̇

= u̇ (20.24)

is conserved. For pv = 0 the particle obviously does not feel the curvature and the

geodesics are straight lines. When pv 6= 0, we choose the lightcone gauge

u = pvτ . (20.25)

Then the geodesic equations for the transverse coordinates are the Euler-Lagrange equa-

tions

ẍa(τ) = Aab(pvτ)x
b(τ)p2

v (20.26)

These are the equation of motion of a non-relativistic harmonic oscillator,

ẍa(τ) = −ω2
ab(τ)x

b(τ) (20.27)

with (possibly time-dependent) frequency matrix

ω2
ab(τ) = −p2

vAab(pvτ) , (20.28)

The constraint

pv v̇(τ) + 1
2Aab(pvτ)x

a(τ)xb(τ)p2
v + 1

2 ẋ
a(τ)ẋa(τ) = 0 (20.29)
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for null geodesics (the case ǫ 6= 0 can be dealt with in the same way) implies, and

thus provides a first integral for, the v-equation of motion. Multiplying the oscillator

equation by xa and inserting this into the constraint, one finds that this can be further

integrated to

pvv(τ) = −1
2x

a(τ)ẋa(τ) + pvv0 . (20.30)

Note that a particular solution of the null geodesic equation is the purely “longitudinal”

null geodesic

xµ(τ) = (u = pvτ, v = v0, x
a = 0) . (20.31)

Along this null geodesic, all the Christoffel symbols of the metric (in Brinkmann coor-

dinates) are zero. Hence Brinkmann coordinates can be regarded as a special case of

Fermi coordinates (briefly mentioned at the beginning of section 2.7).

By definition the lightcone Hamiltonian is

Hlc = −pu , (20.32)

where pu is the momentum conjugate to u in the gauge u = pvτ . With the above

normalisation of the Lagrangian one has

pu = ḡuµẋ
µ = v̇ +Aab(pvτ)x

axbpv

= −p−1
v Hho(τ) , (20.33)

where Hho(τ) is the (possibly time-dependent) harmonic oscillator Hamiltonian

Hho(τ) = 1
2(ẋaẋa − p2

vAab(pvτ)x
axb) . (20.34)

Thus for the lightcone Hamiltonian one has

Hlc = 1
pv
Hho . (20.35)

In summary, we note that in the lightcone gauge the equation of motion for a relativistic

particle becomes that of a non-relativistic harmonic oscillator. This harmonic oscillator

equation appears in various different contexts when discussing plane waves, and will

therefore also reappear several times later on in this section.

20.4 Curvature and Singularities of Plane Waves

It is easy to see that there is essentially only one non-vanishing component of the

Riemann curvature tensor of a plane wave metric, namely

R̄uaub = −Aab . (20.36)

In particular, therefore, because of the null (or chiral) structure of the metric, there is

only one non-trivial component of the Ricci tensor,

R̄uu = −δabAab ≡ −TrA , (20.37)

260



the Ricci scalar is zero,

R̄ = 0 , (20.38)

and the only non-zero component of the Einstein tensor (7.53) is

Ḡuu = R̄uu . (20.39)

Thus, as claimed above, the metric is flat iff Aab = 0. Moreover, we see that in

Brinkmann coordinates the vacuum Einstein equations reduce to a simple algebraic

condition on Aab (regardless of its u-dependence), namely that it be traceless.

A simple example of a vacuum plane wave metric in four dimensions is

ds̄2 = 2dudv + (x2 − y2)du2 + dx2 + dy2 , (20.40)

or, more generally,

ds̄2 = 2dudv + [A(u)(x2 − y2) + 2B(u)xy]du2 + dx2 + dy2 (20.41)

for arbitrary fuctions A(u) and B(u). This reflects the two polarisation states or de-

grees of freedom of a four-dimensional graviton. Evidently, this generalises to arbitrary

dimensions: the number of degrees of freedom of the traceless matrix Aab(u) correspond

precisely to those of a transverse traceless symmetric tensor (a.k.a. a graviton).

The Weyl tensor is the traceless part of the Riemann tensor,

C̄uaub = −(Aab −
1

d
δab TrA) . (20.42)

Thus the Weyl tensor vanishes (and, for d > 1, the plane wave metric is conformally

flat) iff Aab is pure trace,

Aab(u) = A(u)δab . (20.43)

For d = 1, every plane wave is conformally flat, as is most readily seen in Rosen

coordinates.

When the Ricci tensor is non-zero (Aab has non-vanishing trace), then plane waves solve

the Einstein equations with null matter or null fluxes, i.e. with an energy-momentum

tensor T̄µν whose only non-vanishing component is T̄uu,

T̄µν = ρ(u)δµuδνu . (20.44)

Examples are e.g. null Maxwell fields Aµ(u) with field strength

Fuµ = −Fµu = ∂uAµ . (20.45)

Physical matter (with positive energy density) corresponds to R̄uu > 0 or TrA < 0.

It is pretty obvious by inspection that not just the scalar curvature but all the scalar

curvature invariants of a plane wave, i.e. scalars built from the curvature tensor and its

covariant derivatives, vanish since there is simply no way to soak up the u-indices.
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Usually, an unambiguous way to ascertain that what appears to be a singularity of

a metric is a true curvature singularity rather than just a singularity in the choice

of coordinates is to exhibit a curvature invariant that is singular at that point. For

example, for the Schwarzschild metric one has the Kretschmann scalar (13.83) K =

RµνρσR
µνρσ ∼ m2/r6, which shows that the singularity at r = 0 is a true singularity.

Now for plane waves all curvature invariants are zero. Does this mean that plane waves

are non-singular? Or, if not, how does one detect the presence of a curvature singularity?

One way to do this is to study the tidal forces acting on extended objects or families

of freely falling particles. Indeed, in a certain sense the main effect of curvature (or

gravity) is that initially parallel trajectories of freely falling non-interacting particles

(dust, pebbles,. . . ) do not remain parallel, i.e. that gravity has the tendency to focus

(or defocus) matter. This statement find its mathematically precise formulation in the

geodesic deviation equation (8.28),

D2

Dτ2
δxµ = Rµνλρẋ

ν ẋλδxρ . (20.46)

Here δxµ is the separation vector between nearby geodesics. We can apply this equation

to some family of geodesics of plane waves discussed in section 20.3. We will choose δxµ

to connect points on nearby geodesics with the same value of τ = u. Thus δu = 0, and

the geodesic deviation equation for the transverse separations δxa reduces to

d2

du2
δxa = −R̄aubuδxb = Aabδx

b . (20.47)

This is (once again!) the harmonic oscillator equation. We could have also obtained this

directly by varying the harmonic oscillator (geodesic) equation for xa, using δu = 0. We

see that for negative eigenvalues of Aab (physical matter) this tidal force is attractive,

leading to a focussing of the geodesics. For vacuum plane waves, on the other hand,

the tidal force is attractive in some directions and repulsive in the other (reflecting the

quadrupole nature of gravitational waves).

What is of interest to us here is the fact that the above equation shows that Aab itself

contains direct physical information. In particular, these tidal forces become infinite

where Aab(u) diverges. This is a true physical effect and hence the plane wave space-

time is genuinely singular at such points.

Let us assume that such a singularity occurs at u = u0. Since u = pvτ is an affine

parameter along the geodesic, this shows that any geodesic starting off at a finite value

u1 of u will reach the singularity in the finite “time” u0 − u1. Thus the space-time is

geodesically incomplete and ends at u = u0.

Since, on the other hand, the plane wave metric is clearly smooth for non-singular

Aab(u), we can thus summarise this discussion by the statement that a plane wave is

singular if and only if Aab(u) is singular somewhere.
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20.5 From Rosen to Brinkmann coordinates (and back)

I still owe you an explanation of what the heuristic considerations of section 20.1 have

to do with the rest of this section. To that end I will now describe the relation between

the plane wave metric in Brinkmann coordinates,

ds̄2 = 2dudv +Aab(u)x
axbdu2 + d~x2 , (20.48)

and in Rosen coordinates,

ds̄2 = 2dUdV + ḡij(U)dyidyj . (20.49)

It is clear that, in order to transform the non-flat transverse metric in Rosen coordinates

to the flat transverse metric in Brinkmann coordinates, one should change variables as

xa = Ēaiy
i , (20.50)

where Ēai is a “vielbein” for ḡij , i.e. it is a matrix which satisfies

ḡij = ĒaiĒ
b
jδab . (20.51)

Denoting the inverse vielbein by Ēia, one has

ḡijdy
idyj = (dxa − ˙̄EaiĒ

i
cx
cdU)(dxb − ˙̄EbjĒ

j
dx

ddU)δab . (20.52)

This generates the flat transverse metric as well as dU2-term quadratic in the xa, as

desired, but there are also unwanted dUdxa cross-terms. Provided that Ē satisfies the

symmetry condition
˙̄EaiĒ

i
b = ˙̄EbiĒ

i
a (20.53)

(such an Ē can always be found and is unique up to U -independent orthogonal trans-

formations), these terms can be cancelled by a shift in V ,

V → V − 1
2

˙̄EaiĒ
i
bx
axb . (20.54)

Apart from eliminating the dUdxa-terms, this shift will also have the effect of gener-

ating other dU2-terms. Thanks to the symmetry condition, the term quadratic in first

derivatives of Ē cancels that arising from ḡijdy
idyj, and only a second-derivative part

remains. The upshot of this is that after the change of variables

U = u

V = v + 1
2

˙̄EaiĒ
i
bx
axb

yi = Ēiax
a , (20.55)

the metric (20.49) takes the Brinkmann form (20.48), with

Aab = ¨̄EaiĒ
i
b . (20.56)
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This can also be written as the harmonic oscillator equation

¨̄Eai = AabĒbi (20.57)

we had already encountered in the context of the geodesic (and geodesic deviation)

equation.

Note that from this point of view the Rosen coordinates are labelled by d out of 2d

linearly independent solutions of the oscillator equation, and the symmetry condition

can now be read as the constraint that the Wronskian among these solutions be zero.

Thus, given the metric in Brinkmann coordinates, one can construct the metric in Rosen

coordinates by solving the oscillator equation, choosing a maximally commuting set of

solutions to construct Ēai, and then determining ḡij algebraically from the Ēai.

In practice, once one knows that Rosen and Brinkmann coordinates are indeed just

two distinct ways of describing the same class of metrics, one does not need to perform

explicitly the coordinate transformation mapping one to the other. All one is interested

in is the above relation between ḡij(U) and Aab(u), which essentially says that Aab is

the curvature of ḡij ,

Aab = −ĒiaĒjbR̄UiUj . (20.58)

The equations simplify somewhat when the metric ḡij(u) is diagonal,

ḡij(u) = ēi(u)
2δij . (20.59)

In that case one can choose Ēai = ēiδ
a
i . The symmetry condition is automatically

satisfied because a diagonal matrix is symmetric, and one finds that Aab is also diagonal,

Aab = (¨̄ea/ēa)δab . (20.60)

Conversely, therefore, given a diaognal plane wave in Brinkmann coordinates, to obtain

the metric in Rosen coordinates one needs to solve the harmonic oscillator equations

¨̄ei(u) = Aii(u)ēi(u) . (20.61)

Thus the Rosen metric determined by ḡij(U) is flat iff ēi(u) = aiU+bi for some constants

ai, bi. In particular, we recover the fact that the metric (20.4),

ds̄2 = 2dUdV + U2d~y2 (20.62)

is flat. We see that the non-uniqueness of the metric in Rosen coordinates is due to

the integration ‘constants’ arising when trying to integrate a curvature tensor to a

corresponding metric.

As another example, consider the four-dimensional vacuum plane wave (20.40). Evi-

dently, one way of writing this metric in Rosen coordinates is

ds̄2 = 2dUdV + sinh2 UdX2 + sin2 UdY 2 , (20.63)

and more generally any plane wave with constant Aab can be chosen to be of this

trigonometric form in Rosen coordinates.
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20.6 More on Rosen Coordinates

Collecting the results of the previous sections, we can now gain a better understanding

of the geometric significance (and shortcomings) of Rosen coordinates for plane waves.

First of all we observe that the metric

ds̄2 = 2dUdV + ḡij(U)dyidyj (20.64)

defines a preferred family (congruence) of null geodesics, namely the integral curves of

the null vector field ∂U , i.e. the curves

(U(τ), V (τ), yk(τ)) = (τ, V, yk) (20.65)

with affine parameter τ = U and parametrised by the constant values of the coordinates

(V, yk). In particular, the “origin” V = yk = 0 of this congruence is the longitudinal

null geodesic (20.31) with v0 = 0 in Brinkmann coordinates.

In the region of validity of this coordinate system, there is a unique null geodesic of

this congruence passing through any point, and one can therefore label (coordinatise)

these points by specifying the geodesic (V, yk) and the affine parameter U along that

geodesic, i.e. by Rosen coordinates.

We can now also understand the reasons for the failure of Rosen coordinates: they cease

to be well-defined (and give rise to spurious coordinate singularities) e.g. when geodesics

in the family (congruence) of null geodesics interesect: in that case there is no longer

a unique value of the coordinates (U, V, yk) that one can associate to that intersection

point.

To illustrate this point, consider simply R
2 with its standard metric ds2 = dx2 + dy2.

An example of a “good” congruence of geodesics is the straight lines parallel to the

x-axis. The corresponding “Rosen” coordinates (“Rosen” in quotes because we are not

talking about null geodesics) are simply the globally well-defined Cartesian coordinates,

x playing the role of the affine parameter U and y that of the transverse coordinates yk

labelling the geodesics. An example of a “bad” family of godesics is the straight lines

through the origin. The corresponding “Rosen” coordinates are essentially just polar

coordinates. Away from the origin there is again a unique geodesic passing through any

point but, as is well known, this coordinate system breaks down at the origin.

With this in mind, we can now reconsider the “bad” Rosen coordinates

ds̄2 = 2dUdV + U2d~y2 (20.66)

for flat space. As we have seen above, in Brinkmann coordinates the metric is manifestly

flat,

ds̄2 = 2dudv + d~x2 . (20.67)
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Using the coordinate transformation (20.55) from Rosen to Brinkmann coordinates, we

see that the geodesic lines yk = ck, V = c of the congruence defined by the metric (20.66)

correspond to the lines xk = cku in Brinkmann (Minkowski) coordinates. But these are

precisely the straight lines through the origin. This explains the coordinate singularity

at U = 0 and further strengthens the analogy with polar coordinates mentioned at the

end of section 20.1.

More generally, we see from (20.55) that the relation between the Brinkmann coordinates

xa and the Rosen coordinates yk,

xa = Ēak(U)yk , (20.68)

and hence the expression for the geodesic lines yk = ck, becomes degenerate when Ēak be-

comes degenerate, i.e. precisely when ḡij becomes degenerate. Brinkmann coordinates,

on the other hand, provide a global coordinate chart for plane wave metrics.

The (almost) inevitablity of (coordinate) singularities in Rosen coordinates can be seen

from the following argument.10 Namely, it follows from the oscillator equation (20.57)

that the determinant

E = det(Ēak) (20.69)

satisfies

Ë/E = TrA+
(
(TrM)2 − Tr(M2)

)
≤ TrA = −R̄uu , (20.70)

where use has been made of the expression R̄uu = −TrA (20.37) for the Ricci tensor,

and where Mab is the symmetric matrix (20.53)

Mab = ˙̄EaiĒ
i
b . (20.71)

In particular, therefore, if R̄uu > 0, then E(u) is strictly concave downwards but positive

at a non-degenerate point, so that necessarily e(u0) = 0 for some finite value of u0, and

the Rosen coordinate system breaks down there. By (20.44), R̄uu > 0 is equivalent to

positivity of the lightcone energy density, a very reasonable requirement on the matter

content.

20.7 The Heisenberg Isometry Algebra of a Generic Plane Wave

We now study the isometries of a generic plane wave metric. In Brinkmann coordinates,

because of the explicit dependence of the metric on u and the transverse coordinates,

only one isometry is manifest, namely that generated by the parallel null vector Z = ∂v.

In Rosen coordinates, the metric depends neither on V nor on the transverse coordinates

yk, and one sees that in addition to Z = ∂V there are at least d more Killing vectors,

10This is adapted from G. Gibbons, Quantized Fields Propagating in Plane-Wave Spacetimes, Com-

mun. Math. Phys. 45 (1975) 191-202.
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namely the ∂yk . Together these form an Abelian translation algebra acting transitively

on the null hypersurfaces of constant U .

However, this is not the whole story. Indeed, one particularly interesting and peculiar

feature of plane wave space-times is the fact that they generically possess a solvable

(rather than semi-simple) isometry algebra, namely a Heisenberg algebra, only part of

which we have already seen above.

All Killing vectors V can be found in a systematic way by solving the Killing equations

LV gµν = ∇µVν + ∇νVµ = 0 . (20.72)

I will not do this here but simply present the results of this analysis in Brinkmann

coordinates. The upshot is that a generic (2 + d)-dimensional plane wave metric has a

(2d + 1)-dimensional isometry algebra generated by the Killing vector Z = ∂v and the

2d Killing vectors

X(f(K)) ≡ X(K) = f(K)a∂a − ḟ(K)ax
a∂v . (20.73)

Here the f(K)a, K = 1, . . . , 2d are the 2d linearly independent solutions of the harmonic

oscillator equation (again!)

f̈a(u) = Aab(u)fb(u) . (20.74)

These Killing vectors satisfy the algebra

[X(J),X(K)] = W (f(J), f(K))Z (20.75)

[X(J), Z] = 0 . (20.76)

Here W (f(J), f(K)), the Wronskian of the two solutions, is defined by

W (f(J), f(K)) =
∑

a

(ḟ(J)af(K)a − ḟ(K)af(J)a) . (20.77)

It is constant (independent of u) as a consequence of the harmonic oscillator equation.

Thus W (f(J), f(K)) is a constant, non-degenerate, even-dimensional antisymmetric ma-

trix (non-degeneracy is implied by the linear independence of the solutions f(J).) Hence

it can be put into standard (Darboux) form. Explicitly, a convenient choice of basis for

the solutions f(J) is obtained by splitting the f(J) into two sets of solutions

{f(J)} → {p(a), q(a)} (20.78)

characterised by the initial conditions

p(a)b(u0) = δab ṗ(a)b(u0) = 0

q(a)b(u0) = 0 q̇(a)b(u0) = δab . (20.79)

Since the Wronskian of these functions is independent of u, it can be determined by

evaluating it at u = u0. Then one can immediately read off that

W (q(a), q(b)) = W (p(a), p(b)) = 0

W (q(a), p(b)) = δab . (20.80)
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Therefore the corresponding Killing vectors

Q(a) = X(q(a)) , P(a) = X(p(a)) (20.81)

and Z satisfy the canonically normalised Heisenberg algebra

[Q(a), Z] = [P(a), Z] = 0

[Q(a), Q(b)] = [P(a), P(b)] = 0

[Q(a), P(b)] = δabZ . (20.82)

20.8 Plane Waves with more Isometries

Generically, a plane wave metric has just this Heisenberg algebra of isometries. It

acts transitively on the null hyperplanes u = const., with a simply transitive Abelian

subalgebra. However, for special choices of Aab(u), there may of course be more Killing

vectors. These could arise from internal symmetries of Aab, giving more Killing vectors

in the transverse directions. For example, the conformally flat plane waves (20.43)

have an additional SO(d) symmetry (and conversely SO(d)-invariance implies conformal

flatness).

Of more interest to us is the fact that for particular Aab(u) there may be Killing vectors

with a ∂u-component. The existence of such a Killing vector renders the plane wave

homogeneous (away form the fixed points of this extra Killing vector). The obvious

examples are plane waves with a u-independent profile Aab,

ds2 = 2dudv +Aabx
axbdu2 + d~x2 , (20.83)

which have the extra Killing vector X = ∂u. Since Aab is u-independent, it can be

diagonalised by a u-independent orthogonal transformation acting on the xa. Moreover,

the overall scale of Aab can be changed, Aab → µ2Aab, by the coordinate transformation

(boost)

(u, v, xa) → (µu, µ−1v, xa) . (20.84)

Thus these metrics are classified by the eigenvalues of Aab up to an overall scale and

permutations of the eigenvalues.

Since Aab is constant, the Riemann curvature tensor is covariantly constant,

∇̄µR̄λνρσ = 0 ⇔ ∂uAab = 0 . (20.85)

Thus a plane wave with constant wave profileAab is what is known as a locally symmetric

space.

The existence of the additional Killing vector X = ∂u extends the Heisenberg algebra

to the harmonic oscillator algebra, with X playing the role of the number operator or
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harmonic oscillator Hamiltonian. Indeed, X and Z = ∂v obviously commute, and the

commutator of X with one of the Killing vectors X(f) is

[X,X(f)] = X(ḟ) . (20.86)

Note that this is consistent, i.e. the right-hand-side is again a Killing vector, because

when Aab is constant and f satisfies the harmonic oscillator equation then so does its

u-derivative ḟ . In terms of the basis (20.81), we have

[X,Q(a)] = P(a)

[X,P(a)] = AabQ(b) , (20.87)

which is the harmonic oscillator algebra.

Another way of understanding the relation between X = ∂u and the harmonic oscillator

Hamiltonian is to look at the conserved charge associated with X for particles moving

along geodesics. As we have seen in section 6.6, given any Killing vector X, the quantity

QX = Xµẋ
µ (20.88)

is constant along the trajectory of the geodesic xµ(τ). For X = ∂u one finds

QX = pu = guµẋ
µ (20.89)

which we had already identified (up to a constant for non-null geodesics) as minus the

harmonic oscillator Hamiltonian in section 20.3. This is indeed a conserved charge iff

the Hamiltonian is time-independent i.e. iff Aab is constant.

We thus see that the dynamics of particles in a symmetric plane wave background is

intimately related to the geometry of the background itself.

Another class of examples of plane waves with an interesting additional Killing vector

are plane waves with the non-trivial profile

Aab(u) = u−2Bab (20.90)

for some constant matrix Bab = Aab(1). Without loss of generality one can then assume

that Bab and Aab are diagonal, with eigenvalues the oscillator frequency squares −ω2
a,

Aab = −ω2
aδabu

−2 . (20.91)

The corrrresponding plane wave metric

ds̄2 = 2dudv +Babx
axb

du2

u2
+ d~x2 (20.92)

is invariant under the boost/scaling (20.84), corresponding to the extra Killing vector

X = u∂u − v∂v . (20.93)
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Note that in this case the Killing vector Z = ∂v is no longer a central element of the

isometry algebra, since it has a non-trivial commutator with X,

[X,Z] = Z . (20.94)

Moreover, one finds that the commutator of X with a Heisenberg algebra Killing vector

X(f), fa a solution to the harmonic oscillator equation, is the Heisenberg algebra Killing

vector

[X,X(f)] = X(uḟ) , (20.95)

corresponding to the solution uḟa = u∂ufa of the harmonic oscillator equation.

This concludes our brief discussion of plane wave metrics even though much more can

and perhaps should be said about plane wave and pp-wave metrics, in particular in the

context of the so-called Penrose Limit construction. For more on this see my lecture

notes11 (from which I also took the material in this chapter).

11M. Blau, Lecture Notes on Plane Waves and Penrose Limits, available from

http://www.blau.itp.unibe.ch/Lecturenotes.html
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21 * Kaluza-Klein Theory

21.1 Motivation: Gravity and Gauge Theory

Looking at the Einstein equations and the variational principle, we see that gravity is

nicely geometrised while the matter part has to be added by hand and is completely

non-geometric. This may be perfectly acceptable for phenomenological Lagrangians

(like that for a perfect fluid in Cosmology), but it would clearly be desirable to have a

unified description of all the fundamental forces of nature.

Today, the fundamental forces of nature are described by two very different concepts.

On the one hand, we have - as we have seen - gravity, in which forces are replaced by

geometry, and on the other hand there are the gauge theories of the electroweak and

strong interactions (the standard model) or their (grand unified, . . . ) generalisations.

Thus, if one wants to unify these forces with gravity, there are two possibilities:

1. One can try to realise gravity as a gauge theory (and thus geometry as a conse-

quence of the gauge principle).

2. Or one can try to realise gauge theories as gravity (and hence make them purely

geometric).

The first is certainly an attractive idea and has attracted a lot of attention. It is also

quite natural since, in a broad sense, gravity is already a gauge theory in the sense

that it has a local invariance (under general coordinate transformations or, actively,

diffeomorphisms). Also, the behaviour of Christoffel symbols under general coordinate

transformations is analogous to the transformation behaviour of non-Abelian gauge

fields under gauge transformations, and the whole formalism of covariant derivatives

and curvatures is reminiscent of that of non-Abelian gauge theories.

At first sight, equating the Christoffel symbols with gauge fields (potentials) may ap-

pear to be a bit puzzling because we originally introduced the metric as the potential

of the gravitational field and the Christoffel symbol as the corresponding field strength

(representing the gravitational force). However, as we know, the concept of ‘force’ is

itself a gauge (coordinate) dependent concept in General Relativity, and therefore these

‘field strengths’ behave more like gauge potentials themselves, with their curvature, the

Riemann curvature tensor, encoding the gauge covariant information about the gravi-

tational field. This fact, which reflects deep properties of gravity not shared by other

forces, is just one of many which suggest that an honest gauge theory interpretation of

gravity may be hard to come by. But let us proceed in this direction for a little while

anyway.
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Clearly, the gauge group should now not be some ‘internal’ symmetry group like U(1)

or SU(3), but rather a space-time symmetry group itself. Among the gauge groups that

have been suggested in this context, one finds

1. the translation group (this is natural because, as we have seen, the generators of

coordinate transformations are infinitesimal translations)

2. the Lorentz group (this is natural if one wants to view the Christoffel symbols as

the analogues of the gauge fields of gravity)

3. and the Poincaré group (a combination of the two).

However, what - by and large - these investigations have shown is that the more one

tries to make a gauge theory look like Einstein gravity the less it looks like a standard

gauge theory and vice versa.

The main source of difference between gauge theory and gravity is the fact that in the

case of Yang-Mills theory the internal indices bear no relation to the space-time indices

whereas in gravity these are the same - contrast F aµν with (F λσ )µν = Rλσµν .

In particular, in gravity one can contract the ‘internal’ with the space-time indices to

obtain a scalar Lagrangian, R, linear in the curvature tensor. This is fortunate because,

from the point of view of the metric, this is already a two-derivative object.

For Yang-Mills theory, on the other hand, this is not possible, and in order to construct

a Lagrangian which is a singlet under the gauge group one needs to contract the space-

time and internal indices separately, i.e. one has a Lagrangian quadratic in the field

stregths. This gives the usual two-derivative action for the gauge potentials.

In spite of these and other differences and difficulties, this approach has not been com-

pletely abandoned and the gauge theory point of view is still very fruitful and useful

provided that one appreciates the crucial features that set gravity apart from standard

gauge theories.

The second possibility alluded to above, to realise gauge theories as gravity, is much

more radical. But how on earth is one supposed to achieve this? The crucial idea

has been known since 1919/20 (T. Kaluza), with important contributions by O. Klein

(1926). So what is this idea?

21.2 The Kaluza-Klein Miracle: History and Overview

In the early parts of the last century, the only other fundamental force that was known,

in addition to gravity, was electro-magnetism, In 1919, Kaluza submitted a paper (to

Einstein) in which he made a number of remarkable observations.
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First of all, he stressed the similarity between Christoffel symbols and the Maxwell field

strength tensor,

Γµνλ = 1
2(∂νgµλ − ∂µgνλ + ∂λgµν)

Fνµ = ∂νAµ − ∂µAν . (21.1)

He then noted that Fµν looks like a truncated Christoffel symbol and proposed, in order

to make this more manifest, to introduce a fifth dimension with a metric such that

Γµν5 ∼ Fµν . This is inded possible. If one makes the identification

Aµ = gµ5 , (21.2)

and the assumption that gµ5 is independent of the fifth coordinate x5, then one finds,

using the standard formula for the Christoffel symbols, now extended to five dimensions,

that

Γµν5 = 1
2(∂5gµν + ∂νgµ5 − ∂µgν5)

= 1
2(∂νAµ − ∂µAν) = 1

2Fνµ . (21.3)

But much more than this is true. Kaluza went on to show that when one postulates

a five-dimensional metric of the form (hatted quantities will from now on refer to five

dimensional quantities)

dŝ2 = gµνdx
µdxν + (dx5 +Aµdx

µ)2 , (21.4)

and calculates the five-dimensional Einstein-Hilbert Lagrangian R̂, one finds precisely

the four-dimensional Einstein-Maxwell Lagrangian

R̂ = R− 1
4FµνF

µν . (21.5)

This fact is affectionately known as the Kaluza-Klein Miracle! Moreover, the five-

dimensional geodesic equation turns into the four-dimensional Lorentz force equation

for a charged particle, and in this sense gravity and Maxwell theory have really been

unified in five-dimensional gravity.

However, although this is very nice, rather amazing in fact, and is clearly trying to tell

us something deep, there are numerous problems with this and it is not really clear

what has been achieved:

1. Should the fifth direction be treated as real or as a mere mathematical device?

2. If it is to be treated as real, why should one make the assumption that the fields

are independent of x5? But if one does not make this assumption, one will not

get Einstein-Maxwell theory.

3. Moreover, if the fifth dimension is to be taken seriously, why are we justified in

setting g55 = 1? If we do not do this, we will not get Einstein-Maxwell theory.
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4. If the fifth dimension is real, why have we not discovered it yet?

In spite of all this and other questions, related to non-Abelian gauge symmetries or the

quantum behaviour of these theories, Kaluza’s idea has remained popular ever since or,

rather, has periodically created psychological epidemics of frantic activity, interrupted

by dormant phases. Today, Kaluza’s idea, with its many reincarnations and variations,

is an indispensable and fundamental ingredient in the modern theories of theoretical high

energy physics (supergravity and string theories) and many of the questions/problems

mentioned above have been addressed, understood and overcome.

Let us now look at this more precisely. We consider a five-dimensional space-time with

coordinates x̂M = (xµ, x5) and a metric of the form (21.4). For later convenience, we

will introduce a parameter λ into the metric (even though we will set λ = 1 for the time

being) and write it as

dŝ2 = gµνdx
µdxν + (dx5 + λAµdx

µ)2 . (21.6)

More explictly, we therefore have

ĝµν = gµν +AµAν

ĝµ5 = Aµ

ĝ55 = 1 . (21.7)

The determinant of the metric is ĝ = g, and the inverse metric has components

ĝµν = gµν

ĝµ5 = −Aµ

ĝ55 = 1 +AµA
µ . (21.8)

We will (for now) assume that nothing depends on x5 (in the old Kaluza-Klein literature

this assumption is known as the cylindricity condition).

Introducing the notation

Fµν = ∂µAν − ∂νAµ

Bµν = ∂µAν + ∂νAµ , (21.9)

the Christoffel symbols are readily found to be

Γ̂µνλ = Γµνλ − 1
2(FµνAλ + FµλAν)

Γ̂5
νλ = 1

2Bνλ − 1
2A

µ(FνµAλ + FλµAν) −AµΓµνλ

Γ̂µ5λ = −1
2F

µ
λ

Γ̂5
5µ = −1

2FµνA
ν

Γ̂µ55 = Γ̂5
55 = 0 . (21.10)
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This does not look particularly encouraging, in particular because of the presence of

the Bµν term, but Kaluza was not discouraged and proceeded to calculate the Riemann

tensor. I will spare you all the components of the Riemann tensor, but the Ricci tensor

we need:

R̂µν = Rµν + 1
2F

ρ
µ Fρν + 1

4F
λρFλρAµAν + 1

2 (Aν∇ρF
ρ
µ +Aµ∇ρF

ρ
ν )

R̂5µ = +1
2∇νF

ν
µ + 1

4AµFνλF
νλ

R̂55 = 1
4FµνF

µν . (21.11)

This looks a bit more attractive and covariant but still not very promising. [However, if

you work in an orthonormal basis, if you know what that means, the result looks much

nicer. In such a basis only the first two terms in R̂µν and the first term in R̂5µ are

present and R̂55 is unchanged, so that all the non-covariant looking terms disappear.]

Now the miracle happens. Calculating the curvature scalar, all the annoying terms drop

out and one finds

R̂ = R− 1
4FµνF

µν , (21.12)

i.e. the Lagrangian of Einstein-Maxwell theory. For λ 6= 1, the second term would have

been multiplied by λ2. We now consider the five-dimensional pure gravity Einstein-

Hilbert action

Ŝ =
1

8πĜ

∫ √
ĝd5x R̂ . (21.13)

In order for the integral over x5 to converge we assume that the x5-direction is a circle

with radius L and we obtain

Ŝ =
2πL

8πĜ

∫ √
gd4x (R − 1

4λ
2FµνF

µν) . (21.14)

Therefore, if we make the identifications

G = Ĝ/2πL

λ2 = 8πG , (21.15)

we obtain

Ŝ =
1

8πG

∫ √
gd4x R− 1

4

∫ √
gd4x FµνF

µν , (21.16)

i.e. precisely the four-dimensional Einstein-Maxwell Lagrangian! This amazing fact, that

coupled gravity gauge theory systems can arise from higher-dimensional pure gravity,

is certainly trying to tell us something.

21.3 The Origin of Gauge Invariance

In physics, at least, miracles require a rational explanation. So let us try to understand

on a priori grounds why the Kaluza-Klein miracle occurs. For this, let us recall Kaluza’s

ansatz for the line element (21.4),

dŝ2KK = gµν(x
λ)dxµdxν + (dx5 +Aµ(x

λ)dxµ)2 . (21.17)
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and contrast this with the most general form of the line element in five dimensions,

namely

dŝ2 = ĝMN (xL)dxMdxN

= ĝµν(x
λ, x5)dxµdxν + 2ĝµ5(x

λ, x5)dxµdx5 + ĝ55(x
µ, x5)(dx5)2 . (21.18)

Clearly, the form of the general five-dimensional line element (21.18) is invariant under

arbitrary five-dimensional general coordinate transformations xM → ξM
′

(xN ). This

is not true, however, for the Kaluza-Klein ansatz (21.17), as a general x5-dependent

coordinate transformation would destroy the x5-independence of ĝµν = gµν and ĝµ5 =

Aµ and would also not leave ĝ55 = 1 invariant.

The form of the Kaluza-Klein line element is, however, invariant under the following

two classes of coordinate transformations:

1. There are four-dimensional coordinate transformations

x5 → x5

xµ → ξν
′

(xµ) (21.19)

Under these transformations, as we know, gµν transforms in such a way that

gµνdx
µdxν is invariant, Aµ = ĝµ5 transforms as a four-dimensional covector, thus

Aµdx
µ is invariant, and the whole metric is invariant.

2. There is also another remnant of five-dimensional general covariance, namely

x5 → ξ5(xµ, x5) = x5 + f(xµ)

xµ → ξµ(xν) = xµ . (21.20)

Under this transformation, gµν and g55 are invariant, but Aµ = gµ5 changes as

A′

µ = ĝ′µ5 =
∂xM

∂ξµ
∂xN

∂ξ5
ĝMN

=
∂xM

∂xµ
gµ5

= gµ5 −
∂f

∂xµ
g55

= Aµ − ∂µf . (21.21)

In other words, the Kaluza-Klein line element is invariant under the shift x5 →
x5 + f(xµ) accompanied by Aµ → Aµ − ∂µf (and this can of course also be read

off directly from the metric).

But this is precisely a gauge transformation of the vector potential Aµ and we see that in

the present context gauge transformations arise as remnants of five-dimensional general

covariance!
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But now it is clear that we are guaranteed to get Einstein-Maxwell theory in four

dimensions: First of all, upon integration over x5, the shift in x5 is irrelevant and

starting with the five-dimensional Einstein-Hilbert action we are bound to end up with

an action in four dimensions, depending on gµν and Aµ, which is (a) generally covariant

(in the four-dimensional sense), (b) second order in derivatives, and (c) invariant under

gauge transformations of Aµ. But then the only possibility is the Einstein-Maxwell

action.

A fruitful way of looking at the origin of this gauge invariance is as a consequence of

the fact that constant shifts in x5 are isometries of the metric, i.e. that ∂/∂x5 is a

Killing vector of the metric (21.17). Then the isometry group of the ‘internal’ circle

in the x5-direction, namely SO(2), becomes the gauge group U(1) = SO(2) of the

four-dimensional theory.

From this point of view, the gauge transformation of the vector potential arises from

the Lie derivative of ĝµ5 along the vector field f(xµ)∂5:

Y = f(xµ)∂5 ⇒ Y µ = 0

Y 5 = f

⇒ Yµ = Aµf

Y5 = f . (21.22)

(LY ĝ)µ5 = ∇̂µY5 + ∇̂5Yµ

= ∂µY5 − 2Γ̂µ5MY
M

= ∂µf + F νµYν + FµνA
νY5

= ∂µf

⇔ δAµ = −∂µf . (21.23)

This point of view becomes particularly useful when one wants to obtain non-Abelian

gauge symmetries in this way (via a Kaluza-Klein reduction): One starts with a higher-

dimensional internal space with isometry group G and makes an analogous ansatz for the

metric. Then among the remnants of the higher-dimensional general coordinate trans-

formations there are, in particular, xµ-dependent ‘isometries’ of the internal metric.

These act like non-Abelian gauge transformations on the off-block-diagonal compone-

nents of the metric and, upon integration over the internal space, one is guaranteed to

get, perhaps among other things, the four-dimensional Einstein-Hilbert and Yang-Mills

actions.

21.4 Geodesics

There is something else that works very beautifully in this context, namely the descrip-

tion of the motion of charged particles in four dimensions moving under the combined
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influence of a gravitational and an electro-magnetic field. As we will see, also these two

effects are unfied from a five-dimensional Kaluza-Klein point of view.

Let us consider the five-dimensional geodesic equation

ẍM + Γ̂MNLẋ
N ẋL = 0 . (21.24)

Either because the metric (and hence the Lagrangian) does not depend on x5, or because

we know that V = ∂5 is a Killing vector of the metric, we know that we have a conserved

quantity
∂L
∂ẋ5

∼ VM ẋ
M = ẋ5 +Aµẋ

µ , (21.25)

along the geodesic world lines. We will see in a moment what this quantity corresponds

to. The remaining xµ-component of the geodesic equation is

ẍµ + Γ̂µNLẋ
N ẋL = ẍµ + Γ̂µνλẋ

ν ẋλ

+ 2Γ̂µν5ẋ
ν ẋ5 + 2Γ̂µ55ẋ

5ẋ5

= ẍµ + Γµνλẋ
ν ẋλ − FµνAλẋ

ν ẋλ − Fµν ẋ
ν ẋ5

= ẍµ + Γµνλẋ
ν ẋλ − Fµν ẋ

ν(Aλẋ
λ + ẋ5) . (21.26)

Therefore this component of the geodesic equation is equivalent to

ẍµ + Γµνλẋ
ν ẋλ = (Aλẋ

λ + ẋ5)Fµν ẋ
ν . (21.27)

This is precisely the Lorentz law if one identifies the constant of motion with the ratio

of the charge and the mass of the particle,

ẋ5 +Aµẋ
µ =

e

m
. (21.28)

Hence electro-magnetic and gravitational forces are indeed unified. The fact that

charged particles take a different trajectory from neutral ones is not a violation of

the equivalence principle but only reflects the fact that they started out with a different

velocity in the x5-direction!

21.5 First Problems: The Equations of Motion

The equations of motion of the four-dimensional Einstein-Hilbert-Maxwell action will

of course give us the coupled Einstein-Maxwell equations

Rµν − 1
2gµνR = 8πGTµν

∇µF
µν = 0 . (21.29)

But now let us take a look at the equations of motion following from the five-dimensional

Einstein-Hilbert action. These are, as we are looking at the vacuum equations, just the

Ricci-flatness equations R̂MN = 0. But looking back at (21.11) we see that these are
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clearly not equivalent to the Einstein-Maxwell equations. In particular, R̂55 = 0 imposes

the constraint

R̂55 = 0 ⇒ FµνF
µν = 0 , (21.30)

and only then do the remaining equations R̂µν = 0, R̂µ5 = 0 become equivalent to the

Einstein-Maxwell equations (21.29).

What happened? Well, for one, taking variations and making a particular ansatz for

the field configurations in the variational principle are two operations that in general do

not commute. In particular, the Kaluza-Klein ansatz is special because it imposes the

condition g55 = 1. Thus in four dimensions there is no equation of motion corresponding

to ĝ55 whereas R̂55 = 0, the additional constraint, is just that, the equation arising

from varying ĝ55. Thus Einstein-Maxwell theory is not a consistent truncation of five-

dimensional General Relativity.

But now we really have to ask ourselves what we have actually achieved. We would like

to claim that the five-dimensional Einstein-Hilbert action unifies the four-dimensional

Einstein-Hilbert and Maxwell actions, but on the other hand we want to reject the

five-dimensional Einstein equations? But then we are not ascribing any dynamics to

the fifth dimension and are treating the Kaluza-Klein miracle as a mere kinematical,

or mathematical, or bookkeeping device for the four-dimensional fields. This is clearly

rather artificial and unsatisfactory.

There are some other unsatisfactory features as well in the theory we have developed so

far. For instance we demanded that there be no dependence on x5, which again makes

the five-dimensional point of view look rather artificial. If one wants to take the fifth

dimension seriously, one has to allow for an x5-dependence of all the fields (and then

explain later, perhaps, why we have not yet discovered the fifth dimension in every-day

or high energy experiments).

21.6 Masses and Charges from Scalar Fields in Five Dimenions

With these issues in mind, we will now revisit the Kaluza-Klein ansatz, regarding the

fifth dimension as real and exploring the consequences of this. Instead of considering

directly the effect of a full (i.e. not restricted by any special ansatz for the metric) five-

dimensional metric on four-dimensional physics, we will start with the simpler case of

a free massless scalar field in five dimensions.

Let us assume that we have a five-dimensional space-time of the form M5 = M4 × S1

where we will at first assume that M4 is Minkowski space and the metric is simply

dŝ2 = −dt2 + d~x2 + (dx5)2 , (21.31)

with x5 a coordinate on a circle with radius L. Now consider a massless scalar field φ̂
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on M5, satisfying the five-dimensional massless Klein-Gordon equation

2̂φ̂(xµ, x5) = η̂MN∂M∂N φ̂(xµ, x5) = 0 . (21.32)

As x5 is periodic with period 2πL, we can make a Fourier expansion of φ̂ to make the

x5-dependence more explicit,

φ̂(xµ, x5) =
∑

n

φn(x
µ)e inx

5/L . (21.33)

Plugging this expansion into the five-dimensional Klein-Gordon equation, we find that

this turns into an infinite number of decoupled equations, one for each Fourier mode of

φn of φ̂, namely

(2 −m2
n)φn = 0 . (21.34)

Here 2 of course now refers to the four-dimensional d’Alembertian, and the mass term

m2
n =

n2

L2
(21.35)

arises from the x5-derivative ∂2
5 in 2̂.

Thus we see that, from a four-dimensional perspective, a massless scalar field in five

dimensions give rise to one massless scalar field in four dimensions (the harmonic or

constant mode on the internal space) and an infinite number of massive fields. The

masses of these fields, known as the Kaluza-Klein modes, have the behaviour mn ∼ n/L.

In general, this behaviour, an infinite tower of massive fields with mass ∼ 1/ length scale

is characteristic of massive fields arising from dimensional reduction from some higher

dimensional space.

Next, instead of looking at a scalar field on Minkowski space times a circle with the

product metric, let us consider the Kaluza-Klein metric,

dŝ2 = −dt2 + d~x2 + (dx5 + λAµdx
µ)2 , (21.36)

and the corresponding Klein-Gordon equation

2̂φ̂(xµ, x5) = ĝMN ∇̂M∂N φ̂(xµ, x5) = 0 . (21.37)

Rather than spelling this out in terms of Christoffel symbols, it is more convenient to

use (4.49) and recall that
√
ĝ =

√
g = 1 to write this as

2̂ = ∂M (ĝMN∂N )

= ∂µĝ
µν∂ν + ∂5ĝ

5µ∂µ + ∂µĝ
µ5∂5 + ∂5ĝ

55∂5

= ηµν∂µ∂ν + ∂5(−λAµ∂µ) + ∂µ(−λAµ∂5) + (1 + λ2AµA
µ)∂5∂5

= ηµν(∂µ − λAµ∂5)(∂ν − λAν∂5) + (∂5)
2 . (21.38)
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Acting with this operator on the Fourier decomposition of φ̂, we evidently again get an

infinte number of decoupled equations, one for each Fourier mode φn of φ̂, namely

[
ηµν(∂µ − i

λn

L
Aµ)(∂ν − i

λn

L
Aν) −m2

n

]
φn = 0 . (21.39)

This shows that the non-constant (n 6= 0) modes are not only massive but also charged

under the gauge field Aµ. Comparing the operator

∂µ − i
λn

L
Aµ (21.40)

with the standard form of the minimal coupling,

~

i
∂µ − eAµ , (21.41)

we learn that the electric charge en of the n’th mode is given by

en
~

=
nλ

L
. (21.42)

In particular, these charges are all integer multiples of a basic charge, en = ne, with

e =
~λ

L
=

√
8πG~

L
. (21.43)

Thus we get a formula for L, the radius of the fifth dimension,

L2 =
8πG~

2

e2
=

8πG~

e2/~
. (21.44)

Restoring the velocity of light in this formula, and identifying the present U(1) gauge

symmetry with the standard gauge symmetry, we recognise here the fine structure con-

stant

α = e2/4π~c ≈ 1/137 , (21.45)

and the Planck length

ℓP =

√
G~

c3
≈ 10−33cm . (21.46)

Thus

L2 =
2ℓ2P
α

≈ 274ℓ2P . (21.47)

This is very small indeed, and it is therefore no surprise that this fifth dimension, if it

is the origin of the U(1) gauge invariance of the world we live in, has not yet been seen.

Another way of saying this is that the fact that L is so tiny implies that the masses mn

are huge, not far from the Planck mass

mP =

√
~c

G
≈ 10−5g ≈ 1019GeV . (21.48)
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These would never have been spotted in present-day accelerators. Thus the massive

modes are completely irrelevant for low-energy physics, the non-constant modes can be

dropped, and this provides a justification for neglecting the x5-dependence. However,

this also means that the charged particles we know (electrons, protons, . . . ) cannot

possibly be identified with these Kaluza-Klein modes.

The way modern Kaluza-Klein theories address this problem is by identifying the light

charged particles we observe with the massless Kaluza-Klein modes. One then requires

the standard spontaneous symmetry breaking mechanism to equip them with the small

masses required by observation. This still leaves the question of how these particles

should pick up a charge (as the zero modes are not only massless but also not charged).

This is solved by going to higher dimensions, with non-Abelian gauge groups, for which

massless particles are no longer necessarily singlets of the gauge group (they could e.g.

live in the adjoint).

21.7 Kinematics of Dimensional Reduction

We have seen above that a massless scalar field in five dimensions gives rise to a massless

scalar field plus an infinite tower of massive scalar fields in four dimensions. What

happens for other fields (after all, we are ultimately interested in what happens to the

five-dimensional metric)?

Consider, for example, a five-dimensional vector potential (covector field) B̂M (xN ).

From a four-dimensional vantage point this looks like a four-dimensional vector field

Bµ(x
ν , x5) and a scalar φ(xµ, x5) = B5(x

µ, x5). Fourier expanding, one will then obtain

in four dimensions:

1. one massless Abelian gauge field Bµ(x
ν)

2. an infinite tower of massive charged vector fields

3. one massless scalar field φ(xµ) = B5(x
µ)

4. an infinite tower of massive charged scalar fields

Retaining, for the same reasons as before, only the massless, i.e. x5-independent, modes

we therefore obtain a theory involving one scalar field and one Abelian vector field

from pure Maxwell theory in five dimensions. The Lagrangian for these fields would be

(dropping all x5-derivatives)

FMNF
MN = FµνF

µν + 2Fµ5F
µ5

→ FµνF
µν + 2(∂µφ)(∂µφ) . (21.49)

This procedure of obtaining Lagrangians in lower dimensions from Lagrangians in higher

dimensions by simply dropping the dependence on the ‘internal’ coordinates is known as
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dimensional reduction or Kaluza-Klein reduction. But the terminology is not uniform

here - sometimes the latter term is used to indicate the reduction including all the

massive modes. Also, in general ‘massless’ is not the same as ‘x5-independent’, and

then Kaluza-Klein reduction may refer to keeping the massless modes rather than the

x5-independent modes one retains in dimensional reduction.

Likewise, we can now consider what happens to the five-dimensional metric ĝMN (xL).

From a four-dimensional perspective, this splits into three different kinds of fields,

namely a symmetric tensor ĝµν , a covector Aµ = ĝµ5 and a scalar φ = ĝ55. As be-

fore, these will each give rise to a massless field in four dimensions (which we interpret

as the metric, a vector potential and a scalar field) as well as an infinite number of

massive fields.

We see that, in addition to the massless fields we considered before, in the old Kaluza-

Klein ansatz, we obtain one more massless field, namely the scalar field φ. Thus, even

if we may be justified in dropping all the massive modes, we should keep this massless

field in the ansatz for the metric and the action. With this in mind we now return to

the Kaluza-Klein ansatz.

21.8 The Kaluza-Klein Ansatz Revisited

Let us once again consider pure gravity in five dimensions, i.e. the Einstein-Hilbert

action

Ŝ =
1

8πĜ

∫ √
ĝd5x R̂ . (21.50)

Let us now parametrise the full five-dimensional metric as

dŝ2 = φ−1/3[gµνdx
µdxµ + φ(dx5 + λAµdx

µ)2] , (21.51)

where all the fields depend on all the coordinates xµ, x5. Any five-dimensional metric

can be written in this way and we can simply think of this as a change of variables

ĝMN → (gµν , Aµ, φ) . (21.52)

In matrix form, this metric reads

(ĝMN ) = φ−1/3

(
gµν + λ2φAµAν λφAν

λφAµ φ

)

(21.53)

For a variety of reasons, this particular parametrisation is useful. In particular, it

reduces to the Kaluza-Klein ansatz when φ = 1 and all the fields are independent of x5

and the φ’s in the off-diagonal component ensure that the determinant of the metric is

independent of the Aµ.
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The only thing that may require some explanation is the strange overall power of φ. To

see why this is a good choice, assume that the overall power is φa for some a. Then for√
ĝ one finds √

ĝ = φ5a/2φ1/2√g = φ(5a+1)/2√g . (21.54)

On the other hand, for the Ricci tensor one has, schematically,

R̂µν = Rµν + . . . , (21.55)

and therefore

R̂ = ĝµνRµν + . . .

= φ−agµνRµν + . . .

= φ−aR+ . . . . (21.56)

Hence the five-dimensional Einstein-Hilbert action reduces to

√
ĝR̂ ∼ φ(5a+1)/2φ−a

√
gR+ . . .

= φ(3a+1)/2√gR+ . . . . (21.57)

Thus, if one wants the five-dimensional Einstein-Hilbert action to reduce to the standard

four-dimensional Einstein-Hilbert action (plus other things), without any non-minimal

coupling of the scalar field φ to the metric, one needs to choose a = −1/3 which is the

choice made in (21.51,21.53).

Making a Fourier-mode expansion of all the fields, plugging this into the Einstein-Hilbert

action
1

8πĜ

∫ √
ĝd5x R̂ , (21.58)

integrating over x5 and retaining only the constant modes g(0)µν , A(0)µ and φ(0), one

obtains the action

S =

∫ √
gd4x

[
1

8πG
R(g(0)µν) −

1

4
φ(0)F(0)µνF

µν
(0)

− 1

48πG
φ−2

(0)
gµν
(0)
∂µφ(0)∂νφ(0)

]
.

(21.59)

Here we have once again made the identifications (21.15). This action may not look as

nice as before, but it is what it is. It is at least generally covariant and gauge invariant,

as expected. We also see very clearly that it is inconsistenst with the equations of

motion for φ(0),

2 log φ(0) =
3

4
8πGφ(0)F(0)µνF

µν
(0) , (21.60)

to set φ(0) = 1 as this would imply F(0)µνF
µν
(0) = 0, in agreement with our earlier

observations regarding R̂55 = 0.

However, the configuration g(0)µν = ηµν , A(0)µ = 0, φ(0) = 1 is a solution to the equations

of motion and defines the ‘vacuum’ or ground state of the theory. From this point of
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view the zero mode metric, (21.53) with the fields replaced by their zero modes, i.e. the

Kaluza-Klein ansatz with the inclusion of φ, has the following interpretation: as usual

in quantum theory, once one has chosen a vacuum, one can consider fluctuations around

that vacuum. The fields g(0)µν , A(0)µ, φ(0) are then the massless fluctuations around the

vacuum and are the fields of the low-energy action. The full classical or quantum theory

will also contain all the massive and charged Kaluza-Klein modes.

21.9 Non-Abelian Generalisation and Outlook

Even though in certain respects the Abelian theory we have discussed above is atypi-

cal, it is rather straightforward to generalise the previous considerations from Maxwell

theory to Yang-Mills theory for an arbitrary non-Abelian gauge group. Of course, to

achieve that, one needs to consider higher-dimensional internal spaces, i.e. gravity in

4 + d dimensions, with a space-time of the form M4 ×Md. The crucial observation is

that gauge symmetries in four dimensions arise from isometries (Killing vectors) of the

metric on Md.

Let the coordinates on Md be xa, denote by gab the metric on Md, and let Ka
i , i =

1, . . . , n denote the n linearly independent Killing vectors of the metric gab. These

generate the Lie algebra of the isometry group G via the Lie bracket

[Ki,Kj ]
a ≡ Kb

i ∂bK
a
j −Kb

j∂bK
a
i = fkijK

a
k . (21.61)

Md could for example be the group manifold of the Lie group G itself, or a homogeneous

space G/H for some subgroup H ⊂ G.

Now consider the following Kaluza-Klein ansatz for the metric,

dŝ2 = gµνdx
µdxν + gab(dx

a +Ka
i A

i
µdx

µ)(dxb +Kb
jA

j
νdx

ν) . (21.62)

Note the appearance of fields with the correct index structure to act as non-Abelian

gauge fields for the gauge group G, namely the Aiµ. Again these should be thought of

as fluctuations of the metric around its ‘ground state’, M4×Md with its product metric

(gµν , gab).

Now consider an infinitesimal coordinate transformation generated by the vector field

V a(xµ, xb) = f i(xµ)Ka
i (x

b) , (21.63)

i.e.

δxa = f i(xµ)Ka
i (x

b) . (21.64)

This leaves the form of the metric invariant, and

δĝµa = LV ĝµa (21.65)
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can be seen to imply

δAiµ = Dµf
i ≡ ∂µf

i − f ijkA
j
µf

k , (21.66)

i.e. precisely an infinitesimal non-Abelian gauge transformation. The easiest way to see

this is to use the form of the Lie derivative not in its covariant form,

LV ĝµa = ∇̂µVa + ∇̂aVµ (21.67)

(which requires knowledge of the Christoffel symbols) but in the form

LV ĝµa = V c∂cĝµa + ∂µV
cĝca + ∂aV

cĝµc . (21.68)

Inserting the definitions of ĝµa and V a, using the fact that the Ka
i are Killing vectors

of the metric gab and the relation (21.61), one finds

LV ĝµa = gabK
b
iDµf

i , (21.69)

and hence (21.66).

One is then assured to find a Yang-Mills like term

LYM ∼ F iµνF
j µνKa

i K
b
jgab (21.70)

in the reduction of the Lagrangian from 4 + d to 4 dimensions.

The problem with this scenario (already prior to worrying about the inclusion of scalar

fields, of which there will be plenty in this case, one for each component of gab) is

that the four-dimensional space-time cannot be chosen to be flat. Rather, it must

have a huge cosmological constant. This arises because the dimensional reduction of

the (4 + d)-dimensional Einstein-Hilbert Lagrangian R̂ will also include a contribution

from the scalar curvature Rd of the metric on Md. For a compact internal space with

non-Abelian isometries this scalar curvature is non-zero and will therefore lead to an

effective cosmological constant in the four-dimensional action. This cosmological con-

stant could be cancelled ‘by hand’ by introducing an appropriate cosmological constant

of the opposite sign into the (d+ 4)-dimensional Einstein-Hilbert action, but this looks

rather contrived and artificial.

Nevertheless, this and other problems have not stopped people from looking for ‘realistic’

Kaluza-Klein theories giving rise to the standard model gauge group in four dimension.

Of course, in order to get the standard model action or something resembling it, fermions

need to be added to the (d+ 4)-dimensional action.

An interesting observation in this regard is that the lowest possible dimension for a

homogenous space with isometry group G = SU(3)×SU(2)×U(1) is seven, so that the

dimension of space-time is eleven. This arises because the maximal compact subgroupH

of G, giving rise to the smallest dimensional homogeneous space G/H of G, is SU(2)×
U(1)×U(1). As the dimension of G is 8+3+1 = 12 and that of H is 3+1+1 = 5, the
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dimension of G/H is 12 − 5 = 7. This is intriguing because eleven is also the highest

dimension in which supergravity exists (in higher dimensions, supersymmetry would

require the existence of spin > 2 particles). That, plus the hope that supergravity

would have a better quantum behaviour than ordinary gravity, led to an enourmous

amount of activity on Kaluza-Klein supergravity in the early 80’s.

Unfortunately, it turned out that not only was supergravity sick at the quantum level

as well but also that it is impossible to get a chiral fermion spectrum in four dimensions

from pure gravity plus spinors in (4+d) dimensions. One way around the latter problem

is to include explicit Yang-Mills fields already in (d+ 4)-dimensions, but that appeared

to defy the purpose of the whole Kaluza-Klein idea.

Today, the picture has changed and supergravity is regarded as a low-energy approxi-

mation to string theory which is believed to give a consistent description of quantum

gravity. These string theories typically live in ten dimensions, and thus one needs

to ‘compactify’ the theory on a small internal six-dimensional space, much as in the

Kaluza-Klein idea. Even though non-Abelian gauge fields now typically do not arise

from Kaluza-Klein reduction but rather from explicit gauge fields in ten dimensions (or

objects called D-branes), in all other respects Kaluza’s old idea is alive, doing very well,

and an indispensable part of the toolkit of modern theoretical high energy physics.

THE END
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